Math240 Elementary Differential Equations Fall 2003 Kansas State University

Written Assignment #3: Riccati Equations (Solutions)

- 1. Equations of the form $\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x)$ are called Riccati equations. If $y_1(x)$ is a known particular solution to a Ricatti equation, then the substitution $v = y y_1$ will transform the Riccati equation into a Bernoulli equation.
 - (a) If $v(x) = y(x) y_1(x)$, then what do y(x) and y'(x) equal (in terms of v and y_1)?

Solution

Since $v(x) = y(x) - y_1(x)$, we have

$$y(x) = v(x) + y_1(x)$$

and

$$y'(x) = v'(x) + y'_1(x)$$

(b) Suppose that $y_1(x)$ is a solution to the Riccati equation

$$\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x).$$

Make the change of variable $v = y - y_1$ to transform this equation into a Bernoulli equation.

Solution

Since $y_1(x)$ solves the Riccati equation, it must be that

$$y'_1 = A(x)y_1^2 + B(x)y_1 + C(x).$$

Plugging in our substitutions yields

$$\begin{split} \underbrace{v' + y'_{1}}_{y'(x)} &= A(x)[\underbrace{v + y_{1}}_{y(x)}]^{2} + B(x)[\underbrace{v + y_{1}}_{y(x)}] + C(x) \\ \Rightarrow v' + [\underbrace{A(x)y_{1}^{2} + B(x)y_{1} + C(x)}_{y'_{1}(x)}] &= A(x)v^{2} + 2A(x)y_{1}v + A(x)y_{1}^{2} \\ &+ B(x)v + B(x)y_{1} + C(x) \\ \Rightarrow v' &= A(x)v^{2} + 2A(x)y_{1}v + B(x)v \\ \Rightarrow v' + [\underbrace{-2A(x)y_{1}(x) - B(x)}_{p(x)}]v &= \underbrace{A(x)}_{q(x)}v^{2}. \end{split}$$

This is in the form of a Bernoulli equation.

2. In each of the following problems is a Riccati equation, a function y_1 and an initial condition. Verify that the function given is a particular solution to the Riccati equation, make the change of variable $v = y - y_1$ to reduce the Ricatti equation to a Bernoulli equation, and solve the resulting Bernoulli equation to obtain all solutions v = v(x). Then return to the original variable and express the solutions as functions y = y(x) and find the particular solution satisfying the initial condition given.

(a)
$$y' = (y - x)^2 + 1;$$
 $y_1(x) = x;$ $y(0) = \frac{1}{2}.$
Solution

<u>Solution</u>

First, we verify that $y_1 = x$ is a solution to this equation. Computing, we find that

$$y'_1 = 1;$$

 $(y_1 - x)^2 + 1 = (x - x)^2 + 1 = 1.$ } so $y'_1 = (y_1 - x)^2 + 1,$

so y_1 is a solution to the differential equation.

Now we solve the equation:

Step 1:	Make the change of variables:
	substituting $y = v + x$ and $y' = v' + 1$ yields
	$v' + 1 = ((v + x) - x)^2 + 1.$
Step 2:	Simplify to a Bernoulli equation:
	$\underline{v'=v^2}$.
	Bernoulli equation
	(Note that this is also a separable equation and
	could be solved as such.)
Step 3:	Solve the Bernoulli equation for v .
substep	1: $v = w^{-1}$ and $v' = -w^{-2}w'$, so
	$-w^{-2}w' = (w^{-1})^2$
substep	2: $w' = -1$.
$\operatorname{substep}$	3: w = -x + C.
substep	4: $v = (C - x)^{-1} = \frac{1}{2}$.
P	C-x
	General Solution
$\operatorname{substep}$	5: Yes, $v = 0$ is a solution, and it is singular
	(not represented in the general solution).
	The solutions to the Bernoulli equation are
	$v = \frac{1}{\alpha}$ and $v = 0$.
Stop 1.	C-x Beverse the substitution: $u = u + x$
Step 4.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$y = \frac{1}{C-x} + x$ and $y = x$.

So the solutions are $y = \frac{1}{C-x} + x$ and y = x.

Finally, we use the initial condition. The solution y = x can not satisfy the initial condition $y(0) = \frac{1}{2}$, so we use the general solution.

$$y(x) = \frac{1}{C-x} + x \Rightarrow y(0) = \frac{1}{C-0} + 0 = \frac{1}{C} = \frac{1}{2} \Rightarrow C = 2$$

$$\boxed{y = \frac{1}{2-x} + x.}$$
(b) $y' = y^2 - \frac{y}{x} - \frac{1}{x^2}, x > 0; \quad y_1(x) = \frac{1}{x}; \quad y(1) = 2.$

$$\underbrace{\text{Solution}}_{1}$$

First, we verify that $y_1 = \frac{1}{x}$ is a solution to this equation. Computing, we see that

$$y_1' = -\frac{1}{x^2};$$

$$y_1^2 - \frac{y_1}{x} - \frac{1}{x^2} = \left(\frac{1}{x}\right)^2 - \left(\frac{1}{x}\right)^2 - \frac{1}{x^2} = -\frac{1}{x^2}.$$
 so $y_1' = y_1^2 - \frac{y_1}{x} - \frac{1}{x^2}$

so y_1 is a solution to the differential equation.

Now we solve the equation:

Step 1: Make the change of variables:
substituting
$$y = v + \frac{1}{x}$$
 and $y' = v' - \frac{1}{x^2}$ yields
 $v' - \frac{1}{x^2} = \left(v + \frac{1}{x}\right)^2 - \frac{1}{x}\left(v + \frac{1}{x}\right) - \frac{1}{x^2}$.
Step 2: Simplify to a Bernoulli equation:
 $v' = v^2 + \frac{2}{x}v - \frac{1}{x}v \Rightarrow \underbrace{v' - \frac{1}{x}v = v^2}_{\text{Bernoulli equation}}$.

Step 3: Solve the Bernoulli equation for v. substep 1: $v = w^{-1}$ and $v' = -w^{-2}w'$, so $-w^{-2}w' - \frac{1}{x}w^{-1} = (w^{-1})^2$ substep 2: $w' + \frac{1}{x}w = -1$. substep 3: Solve this linear equation for w $\mu(x) = e^{\int \frac{1}{x}dx} = e^{\ln |x|} = e^{\ln x} = x$ $xw' + w = -x \Rightarrow \frac{d}{dx}[xw] = -x$ $\Rightarrow xw = -\frac{1}{2}x^2 + C \Rightarrow w = -\frac{1}{2}x + \frac{C}{x}$. $\Rightarrow w = \frac{C - x^2}{2x}$ substep 4: $v = \left(\frac{C - x^2}{2x}\right)^{-1} = \frac{2x}{C - x^2}$. General Solution substep 5: Yes, v = 0 is a solution to the Bernoulli equation, and it is singular (not represented in the general solution).

The solutions to the Bernoulli equation are

$$v = \frac{2x}{C - x^2} \text{ and } v = 0.$$

Step 4: Reverse the substitution: $y = v + \frac{1}{x}$
$$y = \frac{2x}{C - x^2} + \frac{1}{x} \text{ and } y = \frac{1}{x}.$$
$$2x \qquad 1 \qquad 1$$

So the solutions are $y = \frac{2x}{C - x^2} + \frac{1}{x}$ and $y = \frac{1}{x}$.

Finally, we use the initial condition. The solution $y = \frac{1}{x}$ can not satisfy the initial condition y(1) = 2, so we use the general solution.

$$y(x) = \frac{2x}{C - x^2} + \frac{1}{x} \Rightarrow y(1) = \frac{2 \cdot 1}{C - 1^2} + \frac{1}{1} = \frac{2}{C - 1} + 1 = 2 \Rightarrow C = 3.$$
$$y = \frac{2x}{3 - x^2} + \frac{1}{x}.$$