Written Assignment \#3: Riccati Equations (Solutions)

1. Equations of the form $\frac{d y}{d x}=A(x) y^{2}+B(x) y+C(x)$ are called Riccati equations. If $y_{1}(x)$ is a known particular solution to a Ricatti equation, then the substitution $v=y-y_{1}$ will transform the Riccati equation into a Bernoulli equation.
(a) If $v(x)=y(x)-y_{1}(x)$, then what do $y(x)$ and $y^{\prime}(x)$ equal (in terms of v and $\left.y_{1}\right)$?

Solution

Since $v(x)=y(x)-y_{1}(x)$, we have

$$
y(x)=v(x)+y_{1}(x)
$$

and

$$
y^{\prime}(x)=v^{\prime}(x)+y_{1}^{\prime}(x)
$$

(b) Suppose that $y_{1}(x)$ is a solution to the Riccati equation

$$
\frac{d y}{d x}=A(x) y^{2}+B(x) y+C(x)
$$

Make the change of variable $v=y-y_{1}$ to transform this equation into a Bernoulli equation.

Solution

Since $y_{1}(x)$ solves the Riccati equation, it must be that

$$
y_{1}^{\prime}=A(x) y_{1}^{2}+B(x) y_{1}+C(x) .
$$

Plugging in our substitutions yields

$$
\begin{array}{r}
\underbrace{v^{\prime}+y_{1}^{\prime}}_{y^{\prime}(x)}=A(x)[\underbrace{v+y_{1}}_{y(x)}]^{2}+B(x)[\underbrace{v+y_{1}}_{y(x)}]+C(x) \\
\Rightarrow v^{\prime}+[\underbrace{A(x) y_{1}^{2}+B(x) y_{1}+C(x)}_{y_{1}^{\prime}(x)}]=\begin{array}{r}
A(x) v^{2}+2 A(x) y_{1} v+A(x) y_{1}^{2} \\
+B(x) v+B(x) y_{1}+C(x)
\end{array} \\
\Rightarrow v^{\prime}=A(x) v^{2}+2 A(x) y_{1} v+B(x) v \\
\Rightarrow v^{\prime}+[\underbrace{-2 A(x) y_{1}(x)-B(x)}_{p(x)}] v=\underbrace{A(x)}_{q(x)} v^{2}
\end{array}
$$

This is in the form of a Bernoulli equation.
2. In each of the following problems is a Riccati equation, a function y_{1} and an initial condition. Verify that the function given is a particular solution to the Riccati equation, make the change of variable $v=y-y_{1}$ to reduce the Ricatti equation to a Bernoulli equation, and solve the resulting Bernoulli equation to obtain all solutions $v=v(x)$. Then return to the original variable and express the solutions as functions $y=y(x)$ and find the particular solution satisfying the initial condition given.
(a) $y^{\prime}=(y-x)^{2}+1 ; \quad y_{1}(x)=x ; \quad y(0)=\frac{1}{2}$.

Solution

First, we verify that $y_{1}=x$ is a solution to this equation. Computing, we find that

$$
\left.\begin{array}{r}
y_{1}^{\prime}=1 \\
\left(y_{1}-x\right)^{2}+1=(x-x)^{2}+1=1
\end{array}\right\} \text { so } \quad y_{1}^{\prime}=\left(y_{1}-x\right)^{2}+1,
$$

so y_{1} is a solution to the differential equation.
Now we solve the equation:
Step 1: Make the change of variables: substituting $y=v+x$ and $y^{\prime}=v^{\prime}+1$ yields

$$
v^{\prime}+1=((v+x)-x)^{2}+1 .
$$

Step 2: Simplify to a Bernoulli equation:

$$
\underbrace{v^{\prime}=v^{2}}_{\text {noulli equation }} .
$$

(Note that this is also a separable equation and could be solved as such.)
Step 3: Solve the Bernoulli equation for v.

$$
\text { substep 1: } \quad v=w^{-1} \text { and } v^{\prime}=-w^{-2} w^{\prime} \text {, so }
$$

$$
-w^{-2} w^{\prime}=\left(w^{-1}\right)^{2}
$$

substep 2: $\quad w^{\prime}=-1$.
substep 3: $\quad w=-x+C$.
substep 4: $\quad v=(C-x)^{-1}=\underbrace{\frac{1}{C-x}}$.
General Solution
substep 5: Yes, $v=0$ is a solution, and it is singular (not represented in the general solution).
The solutions to the Bernoulli equation are

$$
v=\frac{1}{C-x} \text { and } v=0
$$

Step 4: Reverse the substitution: $y=v+x$

$$
y=\frac{1}{C-x}+x \text { and } y=x .
$$

So the solutions are $y=\frac{1}{C-x}+x$ and $y=x$.
Finally, we use the initial condition. The solution $y=x$ can not satisfy the initial condition $y(0)=\frac{1}{2}$, so we use the general solution.

$$
\begin{aligned}
& \quad y(x)=\frac{1}{C-x}+x \Rightarrow y(0)=\frac{1}{C-0}+0=\frac{1}{C}=\frac{1}{2} \Rightarrow C=2 . \\
& y=\frac{1}{2-x}+x .
\end{aligned}
$$

(b) $y^{\prime}=y^{2}-\frac{y}{x}-\frac{1}{x^{2}}, x>0 ; \quad y_{1}(x)=\frac{1}{x} ; \quad y(1)=2$.

Solution

First, we verify that $y_{1}=\frac{1}{x}$ is a solution to this equation. Computing, we see that

$$
\left.\begin{array}{rl}
y_{1}^{\prime} & =-\frac{1}{x^{2}} \\
y_{1}^{2}-\frac{y_{1}}{x}-\frac{1}{x^{2}}=\left(\frac{1}{x}\right)^{2}-\left(\frac{1}{x}\right)^{2}-\frac{1}{x^{2}} & =-\frac{1}{x^{2}}
\end{array}\right\} \text { so } y_{1}^{\prime}=y_{1}^{2}-\frac{y_{1}}{x}-\frac{1}{x^{2}}
$$

so y_{1} is a solution to the differential equation.
Now we solve the equation:
Step 1: Make the change of variables:
substituting $y=v+\frac{1}{x}$ and $y^{\prime}=v^{\prime}-\frac{1}{x^{2}}$ yields

$$
v^{\prime}-\frac{1}{x^{2}}=\left(v+\frac{1}{x}\right)^{2}-\frac{1}{x}\left(v+\frac{1}{x}\right)-\frac{1}{x^{2}}
$$

Step 2: Simplify to a Bernoulli equation:

$$
v^{\prime}=v^{2}+\frac{2}{x} v-\frac{1}{x} v \Rightarrow \underbrace{v^{\prime}-\frac{1}{x} v=v^{2}}_{\text {Bernoulli equation }}
$$

Step 3: Solve the Bernoulli equation for v. substep 1: $v=w^{-1}$ and $v^{\prime}=-w^{-2} w^{\prime}$, so

$$
-w^{-2} w^{\prime}-\frac{1}{x} w^{-1}=\left(w^{-1}\right)^{2}
$$

substep 2: $\quad w^{\prime}+\frac{1}{x} w=-1$.
substep 3: Solve this linear equation for w

$$
\begin{aligned}
& \mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=e^{\ln x}=x \\
& x w^{\prime}+w=-x \Rightarrow \frac{d}{d x}[x w]=-x \\
& \Rightarrow x w=-\frac{1}{2} x^{2}+C \Rightarrow w=-\frac{1}{2} x+\frac{C}{x} \\
& \Rightarrow w=\frac{C-x^{2}}{2 x}
\end{aligned}
$$

substep 4: $\quad v=\left(\frac{C-x^{2}}{2 x}\right)^{-1}=\underbrace{\frac{2 x}{C-x^{2}}}$.
General Solution
substep 5: Yes, $v=0$ is a solution to the Bernoulli equation, and it is singular (not represented in the general solution).
The solutions to the Bernoulli equation are

$$
v=\frac{2 x}{C-x^{2}} \text { and } v=0
$$

Step 4: Reverse the substitution: $y=v+\frac{1}{x}$

$$
y=\frac{2 x}{C-x^{2}}+\frac{1}{x} \text { and } y=\frac{1}{x}
$$

So the solutions are $y=\frac{2 x}{C-x^{2}}+\frac{1}{x}$ and $y=\frac{1}{x}$.
Finally, we use the initial condition. The solution $y=\frac{1}{x}$ can not satisfy the initial condition $y(1)=2$, so we use the general solution.

$$
\begin{aligned}
& y(x)=\frac{2 x}{C-x^{2}}+\frac{1}{x} \Rightarrow y(1)=\frac{2 \cdot 1}{C-1^{2}}+\frac{1}{1}=\frac{2}{C-1}+1=2 \Rightarrow C=3 . \\
& y=\frac{2 x}{3-x^{2}}+\frac{1}{x} .
\end{aligned}
$$

