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Introduction

This text represents lecture notes for the course Mathematical methods in fluid dynamics (01MMDY),
taught at FNSPE CTU in Prague in the first year of the Master’s degree “Mathematical Engineering”
study program.

The first part deals with derivation of conservation laws and the problems for partial differential
equations generally used describe fluid flow. There is a considerable overlap with classic continuum
mechanics courses, with an emphasis on the study of flow. The second part is devoted to the mathe-
matical analysis of the problem of incompressible flow. Great attention is paid to the explanation of
all the mathematical terms and concepts used. The final part is focused more practically. It contains
the formulation of problems and approaches in specific applications. These also include more com-
plex phenomena and processes in which flow plays a central role. Students thus gain an overview
of the various approaches used in mathematical modeling of processes in nature and industry. The
course covers the following topics:

1. Formulation and brief derivation of conservation laws in a fluid (continuity equation, Navier-
Stokes equations, energy equation)

2. Euler’s equations, boundary conditions for viscous and inviscid flow problems.

3. Irrotational flow, potential equation.

4. Basic qualitative properties of the Navier-Stokes equations - strong and weak solutions, ques-
tions of existence and uniqueness in stationary and non-stationary cases.

5. Flow problems, formulation of flow equations in a lower dimension, boundary conditions in a
lower dimension.

6. Turbulent flow and turbulence modeling, Reynolds-averaged NS equations and filtering.

7. Thermodynamics of fluids, heat transfer, radiation.

8. Reacting multicomponent flow, combustion modeling.

9. Multiphase flow, phase transitions.

10. Dimensionless numbers characterizing the flow.

11. Flow problems with a free boundary.

7





CHAPTER

1
Mathematical apparatus

1.1 Vectors

• A vector x ∈Rn is a column of real numbers

x =


x1

x2
...

xn

= (x1, x2, . . . , xn)T .

Vectors of the standard basis of Rn will be denoted by e1,e2, . . . ,en , with

eℓ = (δℓ1,δℓ2, . . . ,δℓn)T ∀ℓ ∈ n̂.

• For the dot product of two vectors a = (a1, a2, . . . , an) and b = (b1,b2, . . . ,bn), we will consider
consistently the standard inner (scalar) product v Rn and write using the symbol · or matrix
multiplication

a ·b = aTb =
n∑

i=1
ai bi .

It applies

a ·b = ∥a∥∥b∥cos(θ), (1.1)

where θ is the angle between the vectors a and b.

• Euclidean norm of a vector a = (a1, a2, . . . , an) induced by the standard inner product is

∥a∥ = |a ·a| 1
2 =

(
n∑

i=1
|ai |2

) 1
2

.

• The cross (vector) product of two vectors a = (a1, a2, a3) and b = (b1,b2,b3) in R3 is an anticom-
mutative operation defined by the relation

a ×b =
∣∣∣∣∣∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣=
 a2b3 −a3b2

a3b1 −a1b3

a1b2 −a2b1

=−b ×a.

9



10 CHAPTER 1. MATHEMATICAL APPARATUS

The Lagrange identity holds for the magnitude (norm) of the cross product

∥a ×b∥2 = ∥a∥2 ∥b∥2 −|a ·b|2 = det

(
a ·a a ·b
b ·a b ·b

)
, (1.2)

where the determinant of the so-called Gram matrix (a Gramian) appears on the right-hand
side. Note that the cross product can also be expressed using an angle θ between the vectors a
and b

a ×b = ∥a∥∥b∥sin(θ)n,

where n is a unit vector perpendicular to the plane given by the vectors a and b. If a,b are
linearly dependent, a ×b = 0 holds.

1.2 Concept of a Tensor Field

In fluid dynamics, there are objects called tensors, but for our purposes, the general concept of a
tensor can be greatly simplified. Nevertheless, we will advantageously use the notations that occur in
the tensor algebra, and it is therefore beneficial to be aware of the connections.

1.2.1 What is a Tensor

Let V be a vector space of dimension n over the field T . Tensor T of type (p, q) (p, q ∈ N0) and
order p +q is a multilinear form

T : V ∗×V ∗×·· ·×V ∗︸ ︷︷ ︸
p-times

×V ×V ×·· ·×V︸ ︷︷ ︸
q-times

→R,

or, alternatively, an element of the tensor product of spaces

T ∈V ⊗V ⊗·· ·⊗V︸ ︷︷ ︸
p-times

⊗V ∗⊗V ∗⊗·· ·⊗V ∗︸ ︷︷ ︸
q-times

.

For example, a (1,0)-tensor is by both these definitions

v : V ∗ →R, or v ∈V ,

respectively, i.e. it is a vector. A unique correspondence between the two definitions is ensured by the
Riesz theorem 1.7.2. Likewise, for a (0,1)-tensor, we have

w : V →R, or w ∈V ∗,

i.e. it is a linear functional.

Definition of T is independent of the choice of basis. In a given basis X , however, a tensor can be
expressed by a

(
p +q

)
- dimensional table („matrix“) of numbers from T in the form

⌈T⌉X ≡ T̂ =
(
τ

j1 j2··· jp

i1i2···iq

)
A

(
p, q

)
-type tensor T where p = 0 is called covariant. For q = 0 , T is contravariant. If pq > 0, T is

tensor of mixed type (q-covariant and p-contravariant).
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1.2.2 Einstein’s Summation Rule

In an term expressed in tensor elements, any index appearing twice implies summation over the
respective index. For example

ρi
klm =σi j

kℓτ j m :=
n∑

j=1
σ

i j
kℓτ j m . (1.3)

Summation index (here j ) appears once as a superscript and once as a subscript. If for example T is a
3rd order tensor of type (1,2), by its application to the triplet

(
u, v , w

) ∈V ∗×V 2, we get

T
(
u, v , w

)= τi
j k ui v j wk .

1.2.3 Tensor Product and Inner Product

Let S,T be two tensors with the representations (in the basis X )

Ŝ =
(
σ

k1k2···kr

ℓ1ℓ2···ℓs

)
, T̂ =

(
τ

j1 j2··· jp

i1i2···iq

)
.

By the tensor product of these two tensors, we understand the U = S⊗T with a representation

Û =
(
µ

k1k2···kr j1 j2··· jp

ℓ1ℓ2···ℓs i1i2···iq

)
,

where
µ

k1k2···kr j1 j2··· jp

ℓ1ℓ2···ℓs i1i2···iq
=σk1k2···kr

ℓ1ℓ2···ℓs
τ

j1 j2··· jp

i1i2···iq
.

The inner (scalar) product of two tensors of conjugate type (later from Sect 1.2.8 de facto of the same
type)

Ŝ =
(
σ

j1 j2··· jp

i1i2···iq

)
, T̂ =

(
τ

i1i2···iq

j1 j2··· jp

)
is a scalar

S⊙T =σ j1 j2··· jp

i1i2···iq
τ

i1i2···iq

j1 j2··· jp
.

1.2.4 Covariance and Contravariance, Transformation of Basis

Let X = (x1, . . . , xn), Y = (
y 1, . . . , y n

)
be bases of the vector space V . Let v ∈V . Then

v =
n∑

j=1
x j (v ) x j =

n∑
i=1

y i (v ) y i ,

where x i , y i denote the i -th coordinate functionals in the bases X ,Y 1. Next, let us denote the column
vectors of the coordinates of the vector v in the bases X ,Y , respectively, as ⌈v⌉X ,⌈v⌉Y . The i -th
coordinate of the vector v in the basis Y can be obtained through the coordinates in the basis X

according to

y i (v ) = y i

(
n∑

j=1
x j (v ) x j

)
=

n∑
j=1

y i (
x j

)
x j (v ) ,

or

⌈v⌉Y =X P̂Y ⌈v⌉X =
(
X P̂Y

)−1
⌈v⌉X , (1.4)

where

X P̂Y =
(

y i (
x j

))= (⌈x1⌉Y . . .⌈xn⌉Y
)

(1.5)

1We write the indices of the coordinate functionals at the top, just like the components of the vector in standard basis.
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is the transition matrix2 from the basis X to the base Y . For the transition matrix from Y to X , an
analogous formula

Y P̂X =
(

x i
(

y j

))
= (⌈

y 1

⌉
X . . .

⌈
y n

⌉
X

)
holds and from the relationship

⌈v⌉Y =X P̂Y ⌈v⌉X =X P̂Y Y
P̂X ⌈v⌉Y ,

it is obvious that Y P̂X = (
X P̂Y

)−1
.

Now, let us specifically choose V = Rn and denote X̂ = (x1 · · ·xn), Ŷ = (
y 1 · · · y n

)
. Let there be a

transformation relation between the bases in the form

Ŷ = X̂Â, (1.6)

where Â ∈Rn×n is a regular matrix. Then for the vector v ∈Rn , we have

Ŷ⌈v⌉Y = X̂Â⌈v⌉Y = X̂⌈v⌉X ,

from which
⌈v⌉Y = Â−1 ⌈v⌉X . (1.7)

By comparing (1.4) a (1.7), we see that
X P̂Y = Â−1,

and therefore also Y P̂X = Â. When transforming the representation in the basis X to the basis Y ,
the coordinates of the vector are transformed inversely (contravariantly, i.e., „against“) to the trans-
formation of bases.

Next, let w ∈V ∗. Then

w (v ) =w

(
n∑

j=1
x j (v ) x j

)
=

n∑
j=1

x j (v ) w
(
x j

)= (
n∑

j=1
w

(
x j

)
x j

)
(v ) ,

i.e., the j -th coordinate of w in the dual basis X ∗ = (
x1, . . . , xn

)
is equal to w

(
x j

)
. For coordinates in

the basis Y ∗, the relationship

w
(

y i

)= w

(
n∑

j=1
x j (

y i

)
x j

)
=

n∑
j=1

x j (
y i

)
w

(
x j

)
holds. For V =Rn , it can be expressed as

⌈
w

⌉
Y ∗ =

(
Y P̂X

)T ⌈
w

⌉
X ∗ ,

and with the primary bases bound by (1.6), we get⌈
w

⌉
Y ∗ = ÂT ⌈

w
⌉
X ∗ , (1.8)⌈

w
⌉T
Y ∗ =

⌈
w

⌉T
X ∗ Â.

Hence, when changing the representation in the basis X ∗ to the basis Y ∗, the coordinates of the
linear functional are transformed in the same way (covariantly) as the bases. Linear functionals are
therefore also called covariant vectors or covectors.

2also referred to as change-of-basis matrix
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1.2.5 Covectors as „Darts“

In a finite-dimensional space V with the inner product (·, ·), every element w ∈ V ∗ has unique
representative u ∈V such that

(v ,u) = w (v ) ∀v ∈V ,

as given by the Riesz theorem 1.7.23. In particular, each dual basis X ∗ = (
x1, . . . , xn

)
has a corre-

sponding linearly independent system of representative vectors X ∗∗ = (
χ1, . . . ,χn

)
which forms the

so called covariant basis of V .

1.2.6 Contravariant and Covariant Vectors in Physics

In the following text, we will try to consistently use Einstein’s summation rule (1.3), if it becomes
clear through which coordinates the summation takes place.

• vector: position, velocity, momentum (units have the length unit in the numerator)

• covector: function gradient (units have length unit in the denominator)

– from the relationship
〈∇ f (x) , v

〉= d f (x) v it can be seen that the gradient has the nature
of a linear functional

1.2.7 Orthogonal Transformations of Tensors

Consider an orthonormal basis X = (x1, x2, x3) of the space R3. In that case, the j -th coordinate
of any vector v ∈V in the basis X is given by the relation

x j ·v = x j ·
(

x i (v ) x i

)
= x i (v )

(
x j · x i

)= x j (v ) .

A representative of the covariant vector x j according to the Riesz theorem is therefore a vector x j and
the covariant basis X ∗∗ coincides with the original (contravariant) basis X . Next, let Q̂ = (

αi j
) ∈R3×3

is an orthogonal transformation matrix that satisfies by definition

Q̂T = Q̂−1, (1.9)

i.e. covariant and contravariant vectors transform the same way according to (1.7) and (1.8), respec-
tively. As we will stick to orthonormal (and preferably the standard) bases of R3, we will no longer
distinguish between covariant and contravariant vectors and tensors, respectively, and only lower
indices will be used.

Given a transformation Q = (
qi j

)
from the base X to the base Y , a tensor T of order s transforms

as

T̂ = ⌈T⌉X = (
τi1···is

)
,

T̂′ = ⌈T⌉Y =
(
τ′i1···is

)
, (1.10)

where
τ′i1···is

= qi1 j1 · · ·qis jsτ j1··· js . (1.11)

Thanks to (1.9), the inverse transformation reads

τi1···is = q j1i1 · · ·q js isτ
′
j1··· js

. (1.12)

For order 2 tensors, we have
τ′i j = qi I q j JτI J , i.e. T′ = QTTQ. (1.13)

3Theorem 1.7.2 is stated for arbitrary-dimensional Hilbert spaces. It can be proved easily for finite-dimensional inner
product spaces, which are always complete (Definition 9), and thus Hilbert.
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1.2.8 Tensors in Fluid Dynamics

For our purposes, we will consider only vectors and second-order tensors. We will unify the no-
tation for tensor T and its representation in the standard basis T̂, i.e. in the following text, we will no
longer write a hat over the symbols that represent matrices. If we work with the tensor representation
T in the basis transformed by the orthogonal transformation Q, we denote it as T′, which corresponds
to the notation in (1.10). Scalar, vector, and tensor physical quantities are dependent on time and on
spatial coordinates. These quantities are therefore called scalar, vector, and tensor fields, respectively.

For tensors of 2nd order with representation in the standard basis, we define:

• transpose of the tensor T = (
τi j

)
is a tensor TT = (

τ j i
)
.

• tensor E is symmetric ⇐⇒ E = ET,

• tensor W is skew-symmetric (also antisymmetric) ⇐⇒ W =−WT

and for the uniformity of notation of some relations, we introduce in addition

• inner (scalar) product of tensors
S ·T = S⊙T =σi jτi j

• inner (scalar) product of a tensor and a vector

v ·T = T ·v = T̂v = (
τi j v j

)
, (1.14)

i.e. a result of multiplication of a column vector by a matrix from the left (but thanks to this
notation and due to the fact that we will usually use it with symmetric tensors, it is not necessary
to distinguish column and row vectors).

The following obvious observations apply

• Every tensor T can be decomposed into a sum of symmetric and skew-symmetric tensor as

T = E+W = 1

2

(
T+TT)+ 1

2

(
T−TT)

. (1.15)

• If E = ET and W =−WT , then E ·W = 0.

• In R3, there is a vector w corresponding to each skew-symmetric tensor W such that(∀v ∈R3) (W ·v = w ×v ) . (1.16)

Indeed, we have

w = (wi ) ⇐⇒ W =
 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (1.17)

1.2.9 Useful Technical Tools and Relationships

We will use the standard symbols

• Kronecker symbol

δi j =
{

0 i ̸= j ,

1 i = j ,
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• and the Levi-Civita symbol

εi j k =


1 if

(
i , j ,k

)
is an even permutation of (1,2,3) ,

−1 if
(
i , j ,k

)
is an odd permutation of (1,2,3) ,

0 otherwise.

Using the symbol εi j k , the i -th component of the cross product a ×b can be easily expressed as

(a ×b)i = εi j k a j bk

and the determinant of the matrix A = (
αi j

) ∈R3×3 as

detA = εi j kα1iα2 jα3k = 1

3!
εI JK εi j kαI iαJ jαK k , (1.18)

where the rightmost expression sums 6 (equal) values of the determinant A obtained by calculating
determinants of matrices with permuted rows, multiplied by the correct sign.

Remark 1. According to Cramer’s rule, it holds for a regular matrix A = (
αi j

) ∈Rn×n that

Ax = b ⇐⇒ xi =
1

detA
∆i ,∀i ∈ {1,2, . . . ,n} ,

where ∆i is the determinant of the matrix that arises from A by replacing its i -th column by a vector
b . By applying Cramer’s rule to the equality AA−1 = I where A−1 = (

α̃i j
)
, we get

α̃i j =
1

detA
∆ j i ,

where ∆ j i is the determinant of the matrix A j i , which originated from A by replacing its i -th column
by the j -th column of the unit matrix I. ∆i j (Not ∆ j i !) is called the algebraic complement (cofactor)
of an element αi j , because it appears in the expansion of the determinant A with respect to the i - th
row line, or j -th column). Again, just for n = 3,

∆I i =
1

2
εI JK εi j kαJ jαK k , (1.19)

which includes a sum of two identical results obtained by expanding the determinant of the matrix
AI i according to the I -th row and i -th column, respectively (hence the factor 1

2 ).

1.2.10 Tensor Invariants

An invariant of a tensor T = (
τi j

)
is a scalar function λ (T), whose value is independent of the

choice of the (orthonormal) basis of the space V
(=R3

)
. That is,

λ
((
τ′i j

))
=λ((

qi k q jℓτkℓ
))=λ((

τi j
))

for any orthogonal matrix Q = (
qi j

) ∈R3×3.

• For example, the inner (scalar) product of tensors S = (
σi j

)
and T = (

τi j
)

is an invariant. Indeed,
on can easily show that

σ′
i jτ

′
i j = qi r q j sσr s qi k q jℓτkℓ = qi r qi k︸ ︷︷ ︸

δr k

q j s q jℓ︸ ︷︷ ︸
δsℓ

σr sτkℓ = δr kδsℓσr sτkℓ =σkℓτkℓ = S ·T.
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• Specially for S = I we get the so-called trace of the tensor T

I ·T = δi jτi j = τi i =: TrT.

Theorem 2. (Cayley-Hamilton) Every square matrix A ∈Rn×n is a root of its characteristic polynomial

l (λ) = det(A−λI) .

From the fact that
det(BC) = detBdetC

for any B,C ∈ Rn×n it follows that the characteristic polynomial obviously does not depend on the
choice of basis, and its n of coefficients are called principal invariants of the matrix (tensor) A. In R3,
these principal invariants are [Ari62, Mar11]

AI1 = TrA,

AI2 =
1

2

(
(TrA)2 −Tr

(
A2)) ,

AI3 = detA.

The tensor A may (and does) have other invariants, but from each set of invariants, it is possible to
select at most three „independent“ ones (for example, these three principal ones), while each the rest
can be expressed as a function of the three.

1.2.11 Isotropic Tensors and Tensor Functions

A tensor function F :R3×3 →R3×3 is called isotropic, iff for each orthogonal transformation Q and
each argument T

F′ (T) = F
(
T′) ,

i.e. according to (1.13)

QTF (T)Q
!= F

(
QTTQ

)
. (1.20)

Component-wise, (1.20) can be interpreted according to the transformation relation (1.11) as

F′ ((τI J
))

i j = qi r q j s F
((
τI J

))
r s

!= F
((

qI r q J sτr s
))

i j = F
((
τ′I J

))
i j

, (1.21)

i.e. the map F performs the same operations over the components of the tensor T, independent of
the choice of basis. For a particular choice of basis, the result is always the same tensor.

Now assume a linear function F (T)i j =αi j kℓτkℓ+βi j , where A = (
ϕi j kℓ

)
is a 4th order tensor a B

is a 2nd order tensor. Substituting F into (1.21), the left-hand side can be written using the inverse
transformation relation (1.12) as

F′ ((τI J
))

i j = qi r q j s
(
αr skℓτkℓ+βr s

)= qi r q j s qRr qSs qK k qLℓα
′
RSK L︸ ︷︷ ︸

αr skℓ

qMk qNℓτ
′
M N︸ ︷︷ ︸

τkℓ

+β′
i j

= δi Rδ j SδK MδLNα
′
RSK Lτ

′
M N +β′

i j =α′
i j K Lτ

′
K L +β′

i j =α′
i j kℓτ

′
kℓ+β′

i j .

On the right side, we then have
F

((
τ′I J

))
i j
=αi j kℓτ

′
kℓ+βi j .

It comes out by comparison that

α′
i j kℓ =αi j kℓ,

β′
i j =βi j .
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This means that all components of tensors A,B must be invariants. We say that tensors A,B are
isotropic (i.e. this is different from the isotropy of the tensor function). For example, isotropic tensors
are

I =(
δi j

)
,(

εi j k
)

,

I⊗ I =(
δi jδkℓ

)
.

It can be shown that the general isotropic tensor must have the form:

• a
(
δi j

)
for a tensor of order 2,

• b
(
εi j k

)
for a tensor of order 3,

• a
(
δi jδkℓ

)+b
(
δi kδ jℓ

)+ c
(
δiℓδ j k

)
for a tensor of order 4,

where a,b,c ∈R.

1.3 Asymptotic Behavior of Functions

We will use Landau symbols o,O with the following meaning. Let f , g :Rn →R. Then we write

f (x) =O
(
g (x)

) ⇐⇒ (∃δ> 0)(∃K > 0)(∀x ∈R)
(|x| < δ =⇒

∣∣ f (x)
∣∣≤ K

∣∣g (x)
∣∣) ,

f (x) = o
(
g (x)

) ⇐⇒ lim
x→0

f (x)

g (x)
= 0.

For vector functions f , g :Rn →Rm in addition

f (x) = o
(
g (x)

) ⇐⇒ (∀i ∈ {1,2, . . . ,m})

(
lim
x→0

fi (x)

gi (x)
= 0

)
.

1.4 Differential Multivariate Calculus

• Function f :Rn →Rm is a vector of scalar functions fℓ :Rn →R

f (x) = (
f1(x), . . . , fm(x)

)T .

• The derivative (total derivative, total differential) of a function of n variables f :Rn →Rm at the

point x0 will be denoted as f ′(x0) or alternatively d f
dx .

• derivative of a function of multiple variables f :Rn →Rm with respect to the vector v at the point
x0 is a vector

∂ f

∂v
(x0) := lim

h→0

1

h

(
f (x0 +hv )− f (x0)

)
and if the total derivative f ′(x0) exists,

∂ f

∂v
(x0) = f ′(x0)v

holds. If v is a unit vector, we call ∂ f
∂v (x0) the derivative of a function f in the direction v at point

x0.
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Remark 3. The definition of the total derivative can be restricted to a certain subset of variables.
Let there be a given function f : Rn1+n2 → Rm , f = f

(
x (1), x (2)

)
where x (1) ∈ Rn1 , x (2) ∈ Rn2 .

Then the total derivative of the function f with respect to the vector of variables x (1) at point(
x (1)

0 , x (2)
0

)
is a linear map d f

dx (1)

(
x (1)

0 , x (2)
0

)
:Rn1 →Rm such that

lim
h→0

1

||h||

(
f (x (1)

0 +h, x (2)
0 )− f (x (1)

0 , x (2)
0 )− d f

dx (1)

(
x (1)

0 , x (2)
0

)
h

)
= 0. (1.22)

This definition can be extended in a straightforward manner to any permutation of compo-
nents of vectors x (1), x (2) in the argument of f . Two different approaches to notation of the
total derivative need to be noted here according to one set of variables. Given that the selected

set of variables x (1) is only composed of a single component, the notation d f
dx (1)

(
x (1)

0 , x (2)
0

)
co-

incides with the partial derivative of the function f with respect to x (1). Therefore, it is also

possible to denote the total derivative by a set of variables x (1) =
(
x(1)

1 , . . . , x(1)
n1

)T
by the symbol

∂ f

∂
(
x(1)

1 ,...,x(1)
n1

) (
x (1)

0 , x (2)
0

)
.

• Partial derivatives of a function f at the point x0 are derivatives in the direction of the standard
basis vectors. They are denoted

∂ f

∂xℓ
(x0) = ∂xℓ f (x0) = ∂ℓ f (x0) := ∂ f

∂eℓ
(x0) . (1.23)

• The matrix representing the linear map f ′ (x0) in standard bases of the spaces Rn and Rm is
called the Jacobi matrix and denoted b

J f (x0) = (
∂1 f (x0) ∂2 f (x0) . . . ∂n f (x0)

)=

∂1 f1(x0) ∂2 f1(x0) . . . ∂n f1(x0)
∂1 f2(x0) ∂2 f2(x0) . . . ∂n f2(x0)

...
...

. . .
...

∂1 fm(x0) . . . . . . ∂n fm(x0)

 .

• Derivative of a function composition f ◦ g : Rn → Rm , where g : Rn → Rs and f : Rs → Rm ,
is under the assumption of the existence of total derivatives f ′(g (x0)) and g ′(x0) given by the
expression (

f ◦g
)′

(x0) = f ′ (g (x0)
)

g ′ (x0) , (1.24)

where on the right-hand side of (1.24). there is a composition of the two linear maps f ′ and g ′

. For the Jacobi matrix of the composite linear map, we therefore have

J f ◦g (x0) = J f (g (x0))Jg (x0).

The rule for calculating the partial derivatives of a function composition follows from the defi-
nition of matrix multiplication. The derivative of the i -th component of the function f ◦ g with
respect to the ℓ-th variable is calculated as

J f ◦g (x0)iℓ =
∂( f ◦g )i

∂xℓ
(x0) =

s∑
k=1

∂ fi (g (x0))

∂yk

∂gk (x0)

∂xℓ
, (1.25)

where yk indicate the components of the function argument f = f (y).
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• To represent derivatives of a function of several variables, the Del (nabla) operator ∇ is com-
monly introduced, which can be represented as a vector of partial derivatives∇= (∂1,∂2, . . . ,∂n)T =(
∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

)T
. The (total) derivative of a scalar function f : Rn → R can be represented by

its gradient, since

∂ f

∂v
(x0) = f ′(x0)v =∇ f (x0) ·v = (

∂1 f ,∂2 f , . . . ,∂n f
)T ·v .

• Partial derivatives of the second order (and higher orders) will be abbreviated according to the
scheme

∂i j f (x0) = ∂ j∂i f (x0) = ∂2 f

∂xi∂x j
(x0) = ∂

∂x j

(
∂ f

∂xi

)∣∣∣∣
x0

.

1.5 Integral Calculus of Functions of Several Variables

• Integral of a scalar function f :Rn →R over a measurable4 set V ⊂Rn is denoted by∫
V

f (x)dµ(x) =
∫
V

f (x)dV =
∫
V

f (x)dx ,

where µ = µn denotes the n-dimensional Lebesgue measure on Rn . The set of all (Lebesgue)
integrable functions on the set V is denoted by L(V ), see Definition 31.

• We say that a map ϕ : Rn → Rn is regular on an open set M ⊂ Rn , if the elements of the matrix
Jϕ are continuous on M and detJϕ (x) ̸= 0 for each x ∈ M .

Theorem. (on substitution in a multidimensional integral) Letϕ :Rn →Rn be a simple regular map-
ping defined on an open set A. Then for each measurable subset V ⊂ A, it holds that∫

V

f
(
ϕ (ξ)

)∣∣detJϕ (ξ)
∣∣dξ=

∫
ϕ(V )

f (x)dx ,

and, alternatively, we have ∫
W

f (x)dx =
∫

ϕ−1(W )

f
(
ϕ (ξ)

)∣∣detJϕ (ξ)
∣∣dξ

for any measurable W ⊂ϕ (A).

Theorem. (Fubini) Let n,m ∈ N, V ⊂ Rn+m . Consider a function f ∈ L(V ), f = f (x), x = (
x (1), x (2)

)T

where x (1) ∈Rn , x (2) ∈Rm . Let us denote

Ax (1) = {
x (2) ⊂Rm

∣∣(x (1), x (2)) ∈V
}

,

B = {
x (1) ∈Rn

∣∣ Ax (1) ̸= ;}
.

Then ∫
V

f (x)dx =
∫
B

 ∫
Ax(1)

f
(
x (1), x (2))dx (2)

dx (1) =:
∫
B

dx (1)
∫

Ax(1)

dx (2) f
(
x (1), x (2))

holds.
4The concepts of measurable function and measurable set are not introduced in this course. These terms appear in

the theory of the Lebesgue integral, which can be constructed in a classical way based on measure theory or by using the
alternative Daniell’s construction, which does not need the prior development of measure theory. For our purposes, every
imaginable set will be measurable, as well as every imaginable function defined on such a set. However, for the sake of
correctness, we state the assumption of measurability in the wording of the theorems.
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1.5.1 Interchange of Derivative and Integral

Theorem 4. (on the derivative of integral with respect to a parameter) Let I ⊂R be an open interval
and V be a measurable set. Let f : V × I →Rmeet the following requirements:

1. Integral F (α) := ∫
V

f (x ,α)dx converges (is finite) for at least one α ∈ I , i.e. shortly

(∃α ∈ I )
(

f (·,α) ∈ L(V )
)

.

2. For each α ∈ I , f (·,α) is a function measurable on V .

3. Function f (x , ·) is differentiable on I for almost all5 x ∈V .

4. ∂ f
∂α is dominated by an integrable function g ∈ L(V ), i.e. for almost all x ∈V and for all α ∈ I∣∣∣∣∂ f (x ,α)

∂α

∣∣∣∣≤ g (x)

holds.

Then for all α ∈ I , the integral F (α) converges and

dF

dα
=

∫
V

∂ f (x ,α)

∂α
dx .

1.6 Integration over Manifolds

1.6.1 Line integral

Definition. Under the term curve in Rn , we understand any continuous function ϕ : [a,b] → Rn . If
ϕ is injective on (a,b), the curve ϕ is called simple. If ϕ (a) =ϕ (b), the curve is closed, otherwise the
curve is open. The set ϕ= 〈

ϕ
〉=ϕ ([a,b]) is called a path or the geometric image of the curve ϕ in Rn .

In turn, the mapϕ is called a parameterization of a the path ϕ.

Definition. Let ϕ : [a,b] → Rn be a path and let (∀t ∈ (a,b))
(∃ϕ̇ (t )

)
. By a line integral (path integral,

curve integral) of the first kind of a function f :Rn →R along the path ϕ, we understand the integral

∫
ϕ

f (x)dl =
b∫

a

f
(
ϕ (t )

)∥∥ϕ̇ (t )
∥∥dt . (1.26)

Definition. By a line integral of the second kind of a vector field (function) f :Rn →Rn , we understand
the integral ∫

ϕ

f (x) ·dl =
b∫

a

f
(
ϕ (t )

) · ϕ̇ (t )dt =
b∫

a

fi
(
ϕ (t )

)
ϕ̇i (t )dt , (1.27)

where the orientation of the path is given by its parameterization.

5The given statement A (x) holds almost everywhere on V , if there is a set N ⊂V with a zero measure µ (N ) = 0 such that
statement A (x) holds ∀x ∈V \N .
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Remark. Components of the vector ϕ̇i (t )dt correspond to the components of the displacement of
the point x =ϕ (t ) along the path in the directions of the coordinate axes, i.e. standard basis vectors
e1, . . . ,en . That’s why the integral (1.27) is sometimes also written as∫

ϕ

f (x) ·dl =
∫
ϕ

f (x) ·dx =
∫
ϕ

fk (x)dxk . (1.28)

Remark. Let ϕ be a path with parameterizationϕ : [a,b] →Rn . A path oriented in the direction oppo-
site to the path ϕ is the path −ϕ given by the parameterization

ϕ̃ (t ) =ϕ (a +b − t ) .

For the line integral of the second kind, ∫
−ϕ

f dl =−
∫
ϕ

f dl

holds.

1.6.2 Surface integral

Although it is possible, with a certain degree of abstraction, to generally introduce integration on
arbitrary m-dimensional manifolds in n-dimensional space (m < n), we focus on the definition of
surface integrals only for surfaces in R3.

Definition. Each map S : M → R3 where M ⊂ R2 is a domain is called a surface parameterization. A
set

S = 〈S〉 = S (M)

is called a surface or a geometric image of the map S. If the map S is injective, we call S a simple
surface. If in addition S ∈ C1 (M) and

∂S

∂u
(u, v)× ∂S

∂v
(u, v) ̸= 0 ∀ (u, v) ∈ M ,

we speak about a simple regular surface.

Remark. A simple regular surface has a uniquely defined normal vector at every point x ∈ S that is
equal to

n (x) =
∂S
∂u (u, v)× ∂S

∂v (u, v)∥∥∥ ∂S
∂u (u, v)× ∂S

∂v (u, v)
∥∥∥ ,

where (u, v) = S−1 (x) .

Definition. A surface integral of the first kind of a scalar function f : R3 → R over a simple regular
surface S is defined as∫

S
f (x)dS =

∫
M

f (S (u, v))

∥∥∥∥∂S

∂u
(u, v)× ∂S

∂v
(u, v)

∥∥∥∥d(u, v) . (1.29)

Remark. Expression dS =
∥∥∥ ∂S
∂u (u, v)× ∂S

∂v (u, v)
∥∥∥d(u, v) has the sense of the area of the infinitesimal

parallelogram given by the vectors ∂S
∂u du and ∂S

∂v dv . The area of S is therefore given by the surface
integral of unity

µ2 (S) =
∫
S

dS.
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Remark. For calculation of dS, one can use the Lagrange identity (1.2).

Definition. A surface integral of the second kind of a vector field f : R3 → R3 over a simple smooth
regular surface S is defined as∫

S

f (x) ·dS =
∫
S

f (x) ·ndS =
∫
M

f (S (u, v)) ·
(
∂S

∂u
(u, v)× ∂S

∂v
(u, v)

)
d(u, v) . (1.30)

Remark. It holds that

dS = ndS = ∂S

∂u
(u, v)× ∂S

∂v
(u, v)d(u, v) ,

where n is the unit normal vector to the surface S at the point S (u, v). Depending on the parameter-
ization, it can point to one side or the other, which affects the sign of the integral. In the following
chapters, we will generally consider closed surfaces forming the boundary of connected sets V ⊂ R3,
i.e. S = ∂V . The vector n will always point outward from the volume V . Under these assumptions,
the sign of the surface integral is uniquely determined.

Remark. The integrand of the surface integral of the second kind is the projection of the vector field
f to the direction normal to the surface S.

Remark. Formal notation of the surface integral of 2nd kind is also∫
S

f (x) ·dS =
∫
S

f1 (x)dx2dx3 + f2 (x)dx1dx3 + f3 (x)dx1dx2.

1.6.3 Green’s formula

The following theorems are a generalization of integration by parts.

Theorem 5. (Green’s formula) Let n ∈ {2,3}, V ⊂ Rn be a domain, let f , g ∈ C1 (V ) and f , g ∈ C(∂V ).
Then ∫

V

∂ f (x)

∂xk
g (x)dx =−

∫
V

f (x)
∂g (x)

∂xk
dx +

∫
∂V

f (x) g (x)nk dS

holds, where nk is k-th component of the vector of the outward pointing normal vector to the boundary
of the domain V .

Theorem 6. (Green’s theorem). Let S ⊂ R2 be a domain and ∂S be a closed, piecewise smooth curve.
Let f :R2 →R2 be a vector field continuously differentiable on S and continuous on ∂S. Then∫

∂S

f (x) ·dl =
∫
S

(
∂ f2

∂x1
− ∂ f1

∂x2

)
dx ,

where the curve ∂S is considered positively (counter-clockwise) oriented.

Theorem 7. (Gauss-Ostrogradsky theorem) Let f ∈ C1
(
R3

)
be a vector field, V ⊂ R3 be a domain.

Then ∫
V

∇· f (x)dx =
∫
∂V

f (x) ·dS

holds, where dS points outof the volume V .
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1.7 Concepts from functional analysis

In this section, we summarize the definitions of function spaces and recall the related statements
used in the theory of partial differential equations [Eva98], which is applied in sections 4.3 and 4.4.
In these parts, we will further extend our theoretical knowledge, but only in the narrow context of
the studied problem. Suitable sources for a more comprehensive study of functional analysis and
functional theory spaces are e.g. [Con90, BEH08, KJF77, Maz85].

1.7.1 Elementary concepts

Definition 8. We say that the sequence of vectors (xn)n∈N ⊂M in a metric space M with metric ρ is
Cauchy, iff

(∀ε> 0)(∃n0 ∈N) (∀m,n > n0)
(
ρ (xn , xm) < ε

)
.

Definition 9. We say that a metric space V is complete iff every Cauchy sequence (xn)n∈N ⊂ V is
convergent in it, i.e. there exists x ∈V such that

lim
n→+∞xn = x .

A complete normed space is called a Banach space. A complete space endowed with an inner product
is called a Hilbert space.6

Definition 10. An orthogonal system of vectors (xα)α∈M in a Hilbert space H is called maximal,
complete, or a basis of H , if and only if it is not a proper subset of another orthogonal system.

Remark. The set of indexes M in Definition (10) can be finite, countable or uncountable. Discussion
of properties of uncountable bases and uncountable sums (using a generalization of sequences to the
so-called „networks“) is beyond the scope of this mathematical introduction and can be found e.g. in
[BEH08, Con90].

Theorem 11. All bases of H have the same cardinality, which we call the dimension of the space H .

Definition 12. A set M is dense in a topological space X if and only if M̄ =X .

Definition 13. A topological space X is called separable if and only if it contains a countable set
dense in X .

Theorem 14. A Hilbert space H is separable if and only if it has a countable basis.

1.7.2 Properties of Banach and Hilbert spaces

Definition 15. Let B1,B2 be Banach spaces. We say that a linear operator A : B1 → B2 is bounded,
iff there is a constant K ≥ 0 such that

(∀v ∈B1)
(∥Av∥B2 ≤ K ∥v∥B1

)
.

We say the operator A is continuous, iff

(∀ε> 0)(∃δ> 0)(∀u, v ∈B1)
(∥u −v∥B1 < δ =⇒ ∥Au − Av∥B2 < ε

)
.

Remark. The notion of continuity can be generalized to metric spaces. In Banach spaces, however,
the above two conditions are obviously equivalent.

6A general vector space with an inner product is called simply an inner product space or, more rarely, a pre-Hilbert
space.
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Definition 16. Let B be a Banach space. The space of all linear functionals on B is called the alge-
braic dual space and is marked B∗. The space of all continuous linear functionals on B is called a
(continuous) dual space and is denoted B′.

Remark. If dimB <+∞, we have B′ =B∗.

Definition 17. Let B be a Banach space with the norm ∥·∥B . The dual norm on the dual space B′ is
given by the relation ∥∥w

∥∥
B′ = sup

v∈B\{0}

∣∣w (v )
∣∣

∥v∥B
= sup

v∈B,∥v∥B=1

∣∣w (v )
∣∣

for each w ∈B′.

Theorem. (Riesz representation theorem) Let H be a Hilbert space with an inner product (·, ·). Then
for each element w ∈H ′ there is exactly one element u ∈H such that

(v ,u) = w (v ) ∀v ∈H .

Moreover,
∥v∥H =

∥∥w
∥∥

H ′

holds.

Remark 18. Riesz theorem proves the existence of the isomorphism (linear bijective mapping)

I : H ′ →H

defined as
I w = u,

which in addition preserves the „size“ of the elements (in the norms ∥·∥H and ∥·∥H ′ , respectively).
Therefore, H and H ′ can be considered de facto equal (they have the same properties in terms of
linear algebra and functional analysis - see in particular the concepts in Section 1.7.10). Dual space
H ′ is also Hilbert, with an induced inner product(

w 1, w 2

)
H ′ =

(
I w 1, I w 2

)
H .

Linear functionals can be represented not only by means of an inner product, but also using any
bilinear form that has „nice-enough“ properties, as shown by the following lemma:

Lemma 19. (Lax-Milgram) Let H be a Hilbert space with an inner product (·, ·)H , let B : H ×H →R

be a bilinear form for which the constants K ,L > 0 exist such that for each u, v ∈ H , the following
properties hold:

1. continuity, or boundedness of B: |B (u, v )| ≤ K ∥u∥H ∥v∥H ,

2. coercivity (or also „V-ellipticity“) B: B (u,u) ≥ L ∥u∥2
H

.

Then for every continuous linear functional w ∈H ′ there is exactly one u ∈H so that

w (v ) = B (u, v ) ,

where

∥u∥H ≤ 1

L

∥∥w
∥∥

H ′ .

Proof. See [Eva98, Chapter 6].
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Remark. The inner product itself satisfies both conditions in the Lax-Milgram lemma 19 with con-
stants K = 1 (Schwarz inequality) and L = 1 (apparently), and for them we get the Riesz theorem 1.7.2
directly .

Definition. Let Bbe a Banach space and v ∈B. Then the map

v : B′ →R

defined by the relation
v

(
w

)= w (v )

is a continuous linear functional on B′, i.e. v ∈B′′. The map

J =
(

v 7→ v
)

is called a canonical evaluation map. The space B is called reflexive, iff the canonical evaluation map
J : B → B′′ is an isomorphism (i.e. a bijective and linear map, preserving linear relations between
elements B and B′′, i.e. the „structure“ of the space B).

Remark 20. Every Hilbert space is reflexive.

Proof. According to the Riesz representation theorem 1.7.2 and remark 18, H (over R) is isomorphic
with H ′ (and in turn, H ′ is also a Hilbert space, isomorphic with H ′′ ).

Definition 21. Let B be a Banach space. We say that a sequence (un) in space B converges weakly to
the element u ∈B and we denote un *u, iff

lim
n→∞w (un) = w (u) , ∀w ∈B′.

Remark 22. Let H be a Hilbert space with an inner product (·, ·)H . According to the Riesz theorem
1.7.2, the definition of weak convergence can be formulated as

un *u ⇐⇒ (∀v ∈H )
(

lim
n→∞ (un , v )H = (u, v )H

)
.

Theorem 23. A Banach space B is reflexive if and only if from every sequence (un) bounded in B, a
subsequence weakly convergent in B can be selected.

1.7.3 Self-adjoint operators on Hilbert spaces

Theorem 24. Let H be a Hilbert space with an inner product (·, ·). Let A : H →H be a bounded linear
operator on H (we denote A ∈B (H )). Then there is exactly one linear operator A∗ ∈B (H ) such that
for all u, v ∈H ,

(Au, v ) =
(
u, A∗v

)
holds.

Proof. For a fixed v ∈ H , u 7→ (Au, v ) is a continuous linear functional, so from the Riesz theorem
1.7.2, there is exactly one z ∈H such that

(Au, v ) = (u, z) .

The map v 7→ z is, however, a linear operator, which we denote A∗.

Definition 25. Operator A∗ from Theorem 24 is called the adjoint operator to the operator A.

• Operator A is called normal, iff A A∗ = A∗A.

• Operator A is called self-adjoint , iff A∗ = A.
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1.7.4 Function spaces Cm and Lp

Definition 26. Let Ω ⊂ Rn for a general n ∈ N. The space C(Ω) is the linear space of all functions
u : Ω → R continuous on Ω with commonly defined vector operations7. Space C

(
Ω̄

)
is the linear

space of all functions from C(Ω), which are in addition uniformly continuous8 on Ω (i.e. we are not
speaking about the closure Ω̄ here).

Definition 27. Let m ∈ N0. We define the function spaces

Cm(Ω) = {
u ∈ C(Ω)| (∀α, |α| ≤ m)

(
Dαu ∈ C(Ω)

)}
,

Cm(Ω̄) = {
u ∈ C(Ω)| (∀α, |α| ≤ m)

(
Dαu ∈ C(Ω̄)

)}
and

C∞(Ω) =
⋂

k∈N
Ck (Ω),

C∞ (
Ω̄

)= ⋂
k∈N

Ck (
Ω̄

)
.

Remark. By definition 27, it follows that C0(Ω) = C(Ω).

Definition 28. We say that the function f :Rm →Rn is Lipschitz-continuous, iff

(∃K > 0)
(∀x , y ∈Rm)(∥∥ f

(
y
)− f (x)

∥∥< K
∥∥y −x

∥∥)
.

Definition 29. We say that Ω ⊂ Rn is a domain with a continuous (or Lipschitz) boundary, if there
exist m (m ∈ N) Cartesian coordinate systems in Rn marked (xr

1 , xr
2 , ..., xr

n−1, xr
n) , m numbers ∆r > 0

and m continuous (or Lipschitz continuous) functions ar (r ∈ m̂) of (n −1) variables such that

1. (∀A ∈ ∂Ω) (∃r ∈ m̂)
(∃x̃r = (

xr
1 , xr

2 , ..., xr
n−1

))(∥∥x̃r
∥∥<∆r ∧ A = [

x̃r , ar (x̃r )
])

,

2. (∃ε0 > 0)(∀ε ∈ (0,ε0)) (∀r ∈ m̂) the following holds:

a) U r
+ = {[

x̃r , xr
n

]∣∣∥∥x̃r
∥∥<∆r ∧ar (

x̃r )< xr
n < ar (

x̃r )+ε}⊂Rn\Ω,

b) U r
− = {[

x̃r , xr
n

]∣∣∥∥x̃r
∥∥<∆r ∧ar (

x̃r )−ε< xr
n < ar (

x̃r )}⊂Ω.

Remark 30. x̃r denotes the first n−1 coordinates in the basis of the local coordinate system. The first
point of the definition means that the boundary ∂Ω can be expressed as the union of a finite number
of function graphs of the given type, which are oriented in space using appropriately chosen coordi-
nate systems. Condition |x̃r | <∆r expresses that individual functions are defined on bounded (n −1)-
dimensional domains and because Lipschitz-continuous and continuous functions on bounded do-
mains are also bounded, this condition essentially implies the boundedness of the domain Ω. The
second point of the definition says that the domain is only on one side of its boundary.

Definition 31. Let p ≥ 1. Then we define the space Lp (Ω) of functions u :Ω→R as9

Lp (Ω) =
u measurable onΩ

∣∣∣∫
Ω

|u(x)|p dx <+∞
 .

7We should consider to match the definitions in some literature u :Ω→C, but we will not encounter complex functions.
8(∀ε> 0)(∃δ> 0)

(∀x , y ∈Ω)(∥∥x − y
∥∥< δ =⇒

∣∣u (x)−u
(

y
)∣∣< ε)

9Lp (Ω) is sometimes marked with an index p above, i.e. as Lp (Ω).
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Remark. It holds that L1 (Ω) = L(Ω). The space L2 (Ω) is a Hilbert space with the inner product

(u, v) =
∫
Ω

u(x)v(x)dx

and the induced norm

∥u∥L2(Ω) =
∫
Ω

|u(x)|2 dx

 1
2

.

For p ̸= 2, Lp (Ω) is a Banach space with the norm

∥u∥Lp (Ω) =
∫
Ω

|u(x)|p dx

 1
p

.

To prove the fact that this is indeed a norm, we need to show that the triangle inequality holds. For
the norm on Lp (Ω), the triangle inequality is known as the Minkowski inequality (Theorem 52).

1.7.5 Generalized functions and weak derivatives

The following concepts are based on [Sch66] and [Eva98].

Definition 32. A measurable function f is locally integrable on the set Ω iff it is integrable on every
compact subset of Ω. The space of locally integrable functions in p-th power is denoted by Lp,loc (Ω).

Definition 33. Letα= (α1, . . . ,αn) whereαi ∈N0 and let us denote |α| =
n∑

i=1
αi . The n-tupleα is called

a multiindex. We define the differential operator

Dα = ∂|α|

∂xα1
1 ∂xα2

2 . . .∂xαn
n

= ∂α1
1 ∂

α2
2 · · ·∂αn

n .

Remark. For |α| = 0, Dα is the identical operator, i.e. Dαu = u.

Definition 34. The vector space C∞
0 (Ω) ⊂ C∞(Ω̄), containing only functions with compact support10

is called the space of test functions on Ω and also denoted by D(Ω). By a distribution (or generalized
function) ,we mean a continuous11 linear functional T : D(Ω) →R. For ϕ ∈D(Ω), we denote〈

T,ϕ
〉

:= T (ϕ).

Remark. The set D′(Ω) of all distributions on D(Ω) is a (continuous) dual space to D(Ω), which is a
subset of the (algebraic) dual space D∗(Ω).

Remark. Functions from C∞
0 (Ω) satisfy the homogeneous Dirichlet boundary condition on ∂Ω (they

are equal to zero on ∂Ω).

10The support, or more precisely the closed support of a function ϕ ∈ C∞(Ω) is the subset of the domain of ϕ

suppϕ= {
x ∈Ω|ϕ (x) ̸= 0

}
.

A set in R3 is compact (see section 1.7.10) iff it is bounded and closed. The closure in the definition is important, because
e.g. continuous functions in Rn can only be nonzero on an open set.

11Continuity is understood in the usual way, but with respect to topology in space D(Ω).
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Definition 35. We say that the distribution T is regular, iff there exists a function u ∈ L1,loc(Ω) such
that ∀ϕ ∈D(Ω), 〈

T,ϕ
〉= (

u,ϕ
)≡ ∫

Ω

u(x)ϕ(x)dx (1.31)

holds. We then label the distribution by Tu or we identify it directly with a function u.

Remark. Obviously, in Definition 35, it is enough to have u ∈ L1,loc(Ω) and not u ∈ L1(Ω), because the
integral (1.31) is actually taken over suppϕ, which is a compact set.

Definition 36. By the i -th partial derivative of a distribution T , we understand the distribution ∂i T
defined by the relation 〈

∂i T,ϕ
〉=−〈

T,∂iϕ
〉 ∀ϕ ∈D(Ω). (1.32)

Remark. If T is regular (defined by a function u according to (1.31)) and u ∈ C1 (Ω), then ∂i T is also
regular and is defined by a function ∂i u. If α is an arbitrary multiindex, it follows from multiple use
of the relation (1.32) that 〈

DαT,ϕ
〉= (−1)|α|

〈
T,Dαϕ

〉 ∀ϕ ∈D(Ω). (1.33)

Any distribution T therefore has derivatives of all orders and if it is defined by a function u according
to the relation (1.31), the distribution DαT is defined by a function Dαu, as long as this (classical,
strong) derivative in the sense of calculus exists (see Green’s formula 5). If not, we say that a function
u has a derivative in the sense of distributions. By this derivative, we mean the distribution DαTu . An
example is the Heaviside function Y (x) =χ(0,+∞)(x), whose first derivative is the Dirac „function“ δ.

Definition 37. We say that the function u ∈ L1,loc (Ω) has a weak derivative w.r.t some multi-index α
iff the distribution DαTu is regular. A function v ∈ L1,loc (Ω) defined according to (1.31) is denoted as

v = Dαu. (1.34)

Remark. For the weak derivative according to (1.31) and (1.33),(
Dαu,ϕ

)= (−1)|α|
(
u,Dαϕ

) ∀ϕ ∈D(Ω)

holds. If f ∈ C|α| (Ω), then of course this relation also satisfies the definition of the classical (strong)
derivative in the sense calculus, which we also denote Dαu. However, unlike the weak derivative, it
must be defined at each point x ∈Ω . The weak derivative is given uniquely in L1,loc (Ω), i.e. if v, w are
weak derivatives of u with respect to to α, then v (x) = w (x) almost everywhere inΩ.

1.7.6 Sobolev spaces

Sobolev spaces [Maz85, Bre10, Kin23] are spaces of functions whose derivatives (of different or-
ders) are from the space Lp (Ω) (see note 40)

Definition 38. Let m ∈N. In space C∞(Ω̄), we define the inner product

(u, v)Hm (Ω) =
∑

|α|≤m

∫
Ω

DαuDαvdx ,

which induces the norm [Kin23, p. 11]

∥u∥Hm (Ω) =
√√√√ ∑

|α|≤m

∫
Ω

|Dαu|2 dx .

By Sobolev space Hm(Ω), we understand the completion (closure) of a set C∞ (
Ω̄

)
with respect to the

norm ∥·∥Hm (Ω). By Hm
0 (Ω), we understand the completion (closure) of C∞

0 (Ω) in Hm(Ω).
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Remark 39. (Completion procedure) Obviously C∞ (
Ω̄

) ⊂ L2(Ω) and in addition for each u ∈ C∞ (
Ω̄

)
,

we have ∥u∥Hm (Ω) ≤ ∥u∥L2(Ω) by Definition 38. Each sequence (vn) ⊂ C∞ (
Ω̄

)
, which is Cauchy in the

norm ∥·∥Hm (Ω), is therefore Cauchy in L2(Ω) and because L2(Ω) is a complete space, the limit of this
sequence v exists in it. If the sequence (vn) also has a limit in C∞ (

Ω̄
)
, then these limits are equal. If

this limit v does not exist in C∞ (
Ω̄

)
, we will add it there. Carrying out this procedure for all Cauchy

sequences, we obtain a complete space - space Hm (Ω).

Remark. Space Hm(Ω) is Hilbert (complete and with inner product). Specifically for m = 1 andΩ ∈R2,
we have (for real functions)

(u, v)H1(Ω) =
∫
Ω

(uv +∂1u∂1v +∂2u∂2v)dx , (1.35)

∥u∥H1(Ω) =
√√√√∫
Ω

(|u|2 +|∂1u|2 +|∂2u|2)dx . (1.36)

Remark. Spaces Hm(Ω) and Hm
0 (Ω), respectively, are also referred to in the literature as Wm,2(Ω) and

Wm,2
0 (Ω). Sobolev spaces are sometimes defined even more generally as closures of Cm(Ω̄) relative to

the norm

∥u∥Wm,p (Ω) = p

√√√√ ∑
|α|≤m

∫
Ω

|Dαu|p dx

and are denoted by Wm,p (Ω). Generally, Wm,p (Ω) ⊂ Lp (Ω). For p ̸= 2, they are only Banach (and not
Hilbert) spaces. The completion procedure is analogous to the one in Remark 39.

Remark 40. For our theory, the relationship

Wm,p (Ω) = {
u :Ω 7→R| (∀α, |α| ≤ m)

(
Dαu ∈ Lp (Ω)

)}
is suitable, where the existence of derivatives Dαu is considered in a weak sense, i.e. in terms of
definition 37.

Theorem 41. (about traces) There is continuous map T : H1 (Ω) → L2 (∂Ω) such that for each u ∈
C∞ (

Ω̄
)
,

Tu = u|∂Ω
holds.

Remark. By definition, C∞ (
Ω̄

)
is dense in H1 (Ω). Theorem (41) says that not only smooth functions

on Ω̄, but also the limits of sequences of such functions can be „restricted“ (or better, defined) on the
boundary ∂Ω. Such functions do not in principle need to be defined ∂Ω at all, i.e. they cannot be
restricted in the classical sense of the word). Operator T is called the trace operator.

1.7.7 Properties of functions from Sobolev space H1 (Ω)

In the following section, we will get an idea of how much „wild“ can the functions from the
Sobolev space H1 (Ω) be.

Definition 42. We will say that the function u : [a,b] → R is absolutely continuous on its domain, iff
for each ε> 0, there is δ> 0 such that for each interval distribution [a,b] in the form

a = x1 < y1 ≤ x2 < y2 ≤ ·· · ≤ xm < ym = b,
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for which
m∑

i=1

(
yi −xi

)< δ,

it holds that
m∑

i=1

∣∣u (
yi

)−u (xi )
∣∣< ε.

Remark. On [a,b], the following implications apply:

Lipschitz property =⇒ absolute continuity =⇒ uniform continuity =⇒ continuity.

Theorem 43. Function u : [a,b] →R is absolutely continuous if and only if there exists v ∈ L1 ((a,b)) so
that for each x ∈ (a,b), we have

u (x) = u (a)+
∫

(a,x)

v (ξ)dξ. (1.37)

Remark. Absolutely continuous functions are those for which the Fundamental Theorem of Calculus
holds (relation 1.37). At the same time,

u′ (x) = v (x)

almost everywhere on (a,b).

Definition 44. Let Ω ⊂ Rn be a domain. We say that the function u : Ω→ R is absolutely continuous
on a straight line p = { tk +P | t ∈R}, if the function

f (t ) = u (tk +P )

is absolutely continuous on every interval [a,b] such that

{ tk +P | t ∈ [a,b]} ⊂Ω.

Theorem 45. (characterization of space H1(Ω) using absolute continuity) Let u ∈ H1(Ω). Then there
is a function ũ ∈ H1(Ω) such that ũ = u almost everywhere in Ω and ũ is absolutely continuous on
almost all lines in Ω parallel to one of the coordinate axes. Classical partial derivatives ũ exist almost
everywhere in Ω and coincide with weak derivatives of ũ.

Remark. Theorem 45 is formulated in accordance with the literature [Maz85, Kin23], but its statement
should be analyzed in more detail.

• Every line parallel to one of the coordinate axes that has a non-empty intersection with Ω,
passes through exactly one point of the projection ofΩ to (n −1)- dimensional hyperplane that
is perpendicular to the relevant axis. This projection has a certain (n −1)-dimensional Lebesgue
measure. Claim „for almost all straight lines“ means „for straight lines passing through almost
all points of the said projection in terms of the said measure“.

• For Ω= (a,b) ⊂R, we get that the functions from H1 ((a,b)) are absolutely continuous on every
compact subinterval of (a,b) and are differentiable almost everywhere in (a,b). This includes
functions that are equal to a certain differentiable function almost everywhere, or functions
that have a derivative almost everywhere, such as u (x) = |x| on (−1,1). Functions that have a
jump-type discontinuity are not contained in H1 ((a,b)).

• The statement also applies analogously to the space W1,p (Ω), p ≥ 1.
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Theorem 46. Let u ∈ L2(Ω) have classical partial derivatives in L2(Ω) and in addition, let it be abso-
lutely continuous on lines parallel to the coordinate axes. Then the classical derivatives of u coincide
with its weak derivatives, and thus u ∈ H1(Ω).

Remark. Theorem46 is the opposite implication to Theorem 46. It can be seen that a function from
L2(Ω), which has classical partial derivatives defined almost everywhere (and therefore also in L2(Ω)),
does not yet have to lie in H1(Ω). If that were the case, then e.g. step functions that have jumps would
lie in H1(Ω).

1.7.8 Bochner spaces

Let J = (0, tmax) bethe time interval and u : J ×Ω→ R be a function dependent on both time and
spatial coordinates. However, the same function can be understood as a function of one variable
u : J → X , where X = {w |w :Ω→R}. Then u (t ) ∈ X and the original notation of the value of the
function at a point can now be expressed in another way: u (t ) = u (t ) (x). The following definition is
in this spirit.

Definition 47. Let X be either a Banach or Hilbert space, J = (a,b) be bounded open interval and
let p ∈N. Then we define the Bochner space

Lp (J ;X ) =

u : J →X

∣∣∣∣∣∣∣
∫
J

∥u(t )∥p
X

dt <+∞


with the norm given by the Bochner integral

∥u∥Lp (J ,X ) = p

√√√√∫
J

∥u(t )∥p
X

dt = ∥∥u(t )∥X ∥Lp (J ) . (1.38)

Remark 48. If X is Banach, so is Lp (J ;X ). If X is Hilbert, then the space L2(J ;X ) is Hilbert with
the inner product given by

(u, v)L2(J ;X ) =
∫
J

(u(t ), v(t ))X dt .

For the formal introduction of the Bochner integral and the theorem that justifies Definition 47, we
refer the reader e.g. to the book [AB06].

1.7.9 Useful inequalities

Theorem 49. (Cauchy-Schwarz inequality). Let H be a linear space with an inner product (·, ·) and
the induced norm ∥·∥. Then ∀u, v ∈H

(u, v) ≤ ∥u∥∥v∥

holds.

Theorem 50. (Young’s inequality). Let it a,b ∈R. Then ab ≤ 1
2 a2 + 1

2 b2.

Remark 51. Let it ν> 0. Then, by substituting into Young’s inequality, we obtain its more general form

ab = ap
ν

p
νb ≤ 1

2ν
a2 + 1

2
νb2.
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Theorem 52. (Minkowski inequality)
Let it u, v ∈ Lp (Ω). Then∫

Ω

|u(x)+ v(x)|p dx

 1
p

≤
∫
Ω

|u(x)|p dx

 1
p

+
∫
Ω

|v(x)|p dx

 1
p

.

Remark. The Minkowski inequality is a triangle inequality for the norm ∥·∥Lp (Ω). With its help, it is
also proven that ∥·∥Lp (Ω) is a norm on Lp (Ω).

Theorem 53. (Hölder’s inequality)
Let p, q ∈ [1,+∞) such that 1

p + 1
q = 1. Then

• for u ∈ Lp (Ω), v ∈ Lq (Ω)

∫
Ω

|u(x)v(x)|dx ≤
∫
Ω

|u(x)|p dx

 1
p
∫
Ω

|v(x)|q dx

 1
q

,

• for u, v ∈Rn

n∑
i=1

|ui vi | ≤
(

n∑
i=1

|ui |p
) 1

p
(

n∑
i=1

|vi |q
) 1

q

,

Corollary 54. For vector functions u ∈ Lp (Ω)n , v ∈ Lq (Ω)n we find by combining both previous cases

∫
Ω

|u ·v |dx =
∫
Ω

∣∣∣∣∣∑
i

ui vi

∣∣∣∣∣dx ≤
∫
Ω

(
n∑

i=1
|ui |p

) 1
p
(

n∑
i=1

|vi |q
) 1

q

dx ≤
∫
Ω

n∑
i=1

|ui |p dx

 1
p
∫
Ω

n∑
i=1

|vi |q dx

 1
q

and specifically for p = q = 1
2

∫
Ω

|u ·v |dx =
∫
Ω

∥u∥2 dx

 1
2
∫
Ω

∥v∥2 dx

 1
2

.

Theorem 55. (Friedrichs inequality) Let Ω ⊂ Rn be a domain a Lipschitz boundary ∂Ω. Let Γ ⊂ ∂Ω

such that (n −1)-dimensional Lebesgue measure mn−1(Γ) > 0. Then there exists k > 0 dependent only
on Ω and Γ such that ∀u ∈ H1(Ω)

∥u∥2
H1(Ω) ≤ k

 n∑
j=1

∫
Ω

∣∣∂ j u
∣∣2 dx +

∫
Γ

u2(s)dS

 .

Remark. An intuitive interpretation of Friedrichs inequality is as follows. If a function has bounded
derivatives in Ω, then in order to also have values bounded in Ω (i.e. ∥u∥2

L2(Ω) =
∫
Ωu2dx < .), it is

enough if these values are bounded at the boundary of Ω, or even only on a "large enough" portion
of it (Γ⊂Ω).

Corollary. (Poincaré’s inequality) LetΩ⊂Rn be a domain a Lipschitz boundary ∂Ω. Then there exists
k > 0 dependent only on Ω such that for ∀u ∈ H1

0(Ω)

∥u∥2
H1

0(Ω)
≤ k

n∑
j=1

∫
Ω

∣∣∂ j u
∣∣2 dx .
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Proof. This is directly the Friedrichs inequality for any admissible choice Γ, for example Γ= ∂Ω. From
the definition of space H1

0(Ω), we have
∫
∂Ω

u2(s)dS = 0.

Corollary 56. Because generally for Ω⊂Rn , the norm on H1
0(Ω) is defined as

∥u∥H1
0(Ω) =

√√√√√∫
Ω

(
|u|2 +

n∑
j=1

∣∣∂ j u
∣∣2

)
dx ,

the converse inequality holds trivially with the choice of constant of proportionality K = 1. It can be
shown that

∥u∥′
H1

0(Ω)
=

√√√√∫
Ω

n∑
j=1

∣∣∂ j u
∣∣2 dx

is also a norm on H1
0(Ω). From Poincaré’s inequality, we get the equivalence of norms ∥·∥H1

0(Ω) and

∥·∥′
H1

0(Ω)
on H1

0(Ω), i.e. the relationship

(∃k,K > 0)
(∀u ∈ H1

0(Ω)
)(

K ∥u∥′
H1

0(Ω)
≤ ∥u∥H1

0(Ω) ≤ k ∥u∥′
H1

0(Ω)

)
.

Remark. Norm equivalence means that both norms induce the same topology in the given space:
the set is open, the sequence is convergent, etc. in one norm as well as in the other, and therefore
both norms need not be distinguished from each other. On a finite-dimensional space, all norms
are equivalent, but on Sobolev spaces, the equivalence of norms ∥·∥H1

0(Ω) and ∥·∥′
H1

0(Ω)
is a non-trivial

result.

Remark 57. Poincaré’s inequality in H1
0 (Ω) de facto allows to estimate the L2-norm of the function

by the sum L2-norms of its derivatives. Obviously, the same cannot apply to H1 (Ω), i.e. without
the compact support condition. As a counterexample, any constant but non-zero function can be
considered.

The following theorem shows the possibility to estimate from above a function that is bounded by
an integral of itself.

Theorem 58. (Grönwall’s lemma) Let u : [t0, t1] 7→R+
0 be continuous, let α> 0,β≥ 0. Let

(∀t ∈ [t0, t1])

u(t ) ≤
t1∫

t0

(
αu(τ)+β)

dt

 .

Then

u(t ) ≤ β

α

(
eα(t−t0) −1

)
.

1.7.10 Compactness and embedding theorems

The following definitions, statements, and theorems can be found e.g. in [KJF77].

Definition 59. Let A,B are sets satisfying A ⊂ B . The identity map ι : A → B defined as

ι (x) = x ∀x ∈ A

is called the inclusion operator.
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Remark. In the case of Hilbert spaces, isomorphism with the dual space can also be used as an inclu-
sion operator according to note 18, i.e. H1 ⊂H2 and ι : H1 →H ′

2.

Definition 60. Let B1,B2 be Banach spaces. A linear operator T : B1 7→ B2 is called completely
continuous, if for every weakly convergent sequence (un) in B1, un * u, the strong convergence
T un → T u holds in B2.

Theorem 61. Every completely continuous operator on a reflexive Banach space is also continuous (i.e.
bounded - see Definition 15).

Proof. Let B1,B2 be Banach spaces, B1 is reflexive and T : B1 7→ B2 is completely continuous. Let
us consider

U = {
v ∈B1|∥v∥B1 = 1

}
.

If T is not bounded, then a sequence v n ∈U exists such that

lim
n→+∞∥T v n∥B2

=+∞.

But as the sequence v n is bounded, a weakly convergent subsequence v kn can be selected from it.
Thanks to complete continuity of T , T v kn strongly converges in B2, which is a contradiction.

Definition 62. A set A in topological space X is called compact if from every open cover of the set A,
i.e. from the system of open sets C such that

A ⊂
⋃

B∈C

B ,

finite subcover can be selected C f , i.e. ∃C f ⊂C ,
∣∣C f

∣∣ ∈N such that

A ⊂
⋃

B∈C f

B.

Definition 63. A set A in topological space X is called sequentially compact if for each sequence of
elements of A there exists a subsequence that has a limit in A.

Remark. In metric spaces, compactness and sequential compactness are equivalent.

Definition 64. A set A in a metric space X is called relatively compact12, if Ā is compact in X .

Definition 65. A linear operator T : B1 7→ B2 is called compact if the image T (A) of every bounded
set A ⊂B1 is relatively compact in B2, i.e. T (A) is compact.

Remark 66. Compact and completely continuous operators can also be defined on more general
(topological vector) spaces. On Banach spaces, every compact operator is also completely contin-
uous. On reflexive Banach spaces, the operator is compact if and only if it is completely continuous.

Theorem 67. Let H be a Hilbert space an A be a compact self-adjoint operator on H . Then there is a
sequence of (repeating eigenvalues of the operator A)

(
µn

)
and a (countable) orthonormal basis (xn) of

the space
ker A⊥ = { x ∈H | Ax = 0}⊥

such that for every v ∈H , we have

Av =
+∞∑
n=1

µn (v , xn) xn .

12Relatively compact sets are sometimes also called precompact. However, the same term also refers to totally bounded
sets, i.e. sets that can for any ε > 0 be covered by finite union of open spheres of radius ε (or equivalently, there is a so-
called finite ε- net, i.e. set of open spheres of radius ε with centers at mutual distance at least ε). In a complete metric
space, relative compactness is equivalent to total boundedness, thereby removing the ambiguity of the definition of the
term "precompact set".
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Proof. See [Con90, chapter II], [Bre10], [Eva98, Appendix E].

Definition 68. We say that a Banach space B1 is continuously embedded into a Banach space B2 and
denote by B1 ,→ B2, if the inclusion operator ι : B1 7→ B2 is continuous, or (see definition 15), there
exists K > 0 so that

∥v∥B2 ≤ K ∥v∥B1 ∀v ∈B1.

Space B1 is compactly embedded into space B2 (denoted by B1 ,→,→ B2) if the inclusion operator
ι : B1 7→B2 is compact.

Remark 69. According to the note 66 and Theorem 61, the implication

B1 ,→,→B2 =⇒ B1 ,→B2

holds.

Theorem 70. Let B1 ,→B2 hold for two Banach spaces . Then B′
2 ,→B′

1.

Proof. Obviously B′
2 ⊂B′

1. We want to prove that there exists K > 0 so that for each w ∈B′
2,∥∥w

∥∥
B′

1
≤ K

∥∥w
∥∥

B′
2

holds. We know that by definition of continuous embedding, there exists K such that

∥v∥B2 ≤ K ∥v∥B1 ,

so if ∥v∥B1 ≤ 1, then surely 1
K ∥v∥B2 ≤ 1. The following holds:∥∥w

∥∥
B′

1
= sup

v∈B1
∥v∥B1=1

∣∣w (v )
∣∣= sup

v∈B1
∥v∥B1≤1

∣∣w (v )
∣∣≤ sup

v∈B1
1
K ∥v∥B2≤1

∣∣w (v )
∣∣

= K sup
v∈B1

∥v∥B2≤1

∣∣w (v )
∣∣≤ K sup

v∈B2
∥v∥B2≤1

∣∣w (v )
∣∣= K

∥∥w
∥∥

B′
2

.

Note that inequalities occur in places where the supremum is taken over the ever larger set of vectors
(in terms of inclusion).

Theorem 71. Let H1,H2 be Hilbert spaces for which H1 ,→,→H2. Let A be a bounded linear operator
A : H1 →H2. Then, if there exists an inverse operator A−1, it is compact.

Lemma 72. (Rellich–Kondrachov compact embedding theorem) Let Ω ⊂ Rn be a bounded domain
with a Lipschitz boundary. Then for each p > 1 and q fulfilling

q ∈
{[

1, np
n−p

)
pro n > p,[

p,+∞)
pro n = p,

it holds that
W1,p (Ω) ,→,→ Lq (Ω).

For q = np
n−p , we only have

W1,p (Ω) ,→ Lq (Ω).

Proof. See [Eva98, Chapter 5], [Bre10, Chapter 9].
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Corollary. Specifically for n ∈ {2,3} and p = 2,

H1 (Ω) ,→,→ L2 (Ω)

holds.

Lemma 73. (Lions–Aubin) Let B0 ,→,→ B ,→ B1 be Banach spaces where B0,B1 are reflexive. Let
p0, p1 ∈ (1,+∞). Let us define a function space

Y =
{

u ∈ Lp0 (J ;B0)
∣∣ ∂u

∂t
∈ Lp1 (J ;B1)

}
with the norm

∥u∥Y = ∥u∥Lp0 (J ;B0) +
∥∥∥∥∂u

∂t

∥∥∥∥
Lp1 (J ;B1)

for each u ∈Y . Then
Y ,→,→ Lp0 (J ;B).

Proof. Can be found e.g. in [Pok20a].



CHAPTER

2
Kinematics of fluids

2.1 Material body

The subject of study is the material body, which occupies a certain connected set V ⊂R3. Without
further assumptions, it is possible to discuss the mathematical tools that describe the transformation
of the elements of this set in time.

2.2 Reference and current configuration of the material body

Consider an affine space
(
R3,o

)
and a coordinate system with the origin at a point o, which does

not move with respect to the observer. For simplicity and without loss of generality, let us choose a
standard basis of the space

e1 = (1,0,0)T ,

e2 = (0,1,0)T ,

e3 = (0,0,1)T

and the origin o = 0 , so every point p ∈ (
R3,o

)
has coordinates identical to the components of the

vector p − o ∈ R3. From the mathematical point of view, we will identify the affine space
(
R3,o

)
,

whose elements are points, and the vector space R3, which contains vectors. Next, let us consider
a time interval J = (0, tmax).

The initial subject of study for us will be the temporal evolution of the material body from time
t = 0 to time t = tmax. At time t = 0, the body is in its initial (reference) state and occupies the volume
V0 ⊂R3 with the boundary ∂V0. Every point X ∈V0, X = (X ,Y , Z )T = (X1, X2, X3)T will be referred to as
the material point. We will use capital letters to denote material points. Due to the physical processes
of deformation (e.g. under the action of external forces), translation or rotation, the shape and/or
the size of the material body changes so that at time t , it occupies the volume V (t ). Generally, the
position of the individual material points changes over time. This brings the material body into a
new, current state, which we describe using spatial coordinates x = (

x, y, z
)T = (x1, x2, x3)T (see Fig.

2.1 ). Our goal is to find the relationship between the initial (reference) and the current the state of
the material body.

Consider the material point X and denote as x (t , X ) its position at time t . At time t = 0, we have
x (0, X ) = X . The value of the function

x : J ×V0 →R3 (2.1)

37
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Figure 2.1: Reference and current configuration of the material body.

for a fixed X ∈ V0 can be imagined as follows. At time t = 0, we draw a cross on the material body at
the point X cross and watch where this cross moves over time. If the continuum is a liquid, we can
put a small ball to the point X watch it be carried away by the current.

Analogously, it is possible to define the velocity of a fixed material point X ∈V0 as the time deriva-
tive of its position, i.e.

v (t , X ) = ∂x

∂t
(t , X ), (2.2)

2.2.1 Transition between reference and spatial coordinates

The physical properties of a material body guarantee that two material points can never meet in
one point of space and at the same time, one material point cannot be in two different places at the
same time. In mathematical terms, the map (2.1) is an injection, i.e.,

x (t , X 1) = x (t , X 2) ⇐⇒ X 1 = X 2.

Furthermore, two distinct material points can neither come infinitely close to each other nor infinitely
distant from each other, which means that the Jacobian

∣∣∣∣ ∂x

∂X

∣∣∣∣=
∣∣∣∣∣∣∣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

∣∣∣∣∣∣∣ ̸= 0. (2.3)

Under these assumptions, the implicit function theorem holds that at every moment in time t , it
guarantees the existence of the inverse mapping

X (t , ·) : V (t ) →V0,
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which, for each point from the current configuration x ∈ V (t ), determines the material point X (t , x)
currently located at the position x .

The velocity of a material point that passes through a fixed point in space x ∈R3 at time t is given
by

V (t , x) = v (t , X (t , x)) . (2.4)

Thus, we find that the velocity can be bound by the relation (2.2) with a fixed material point X ,
or by the relation (2.4) with a fixed point in space x . The same applies to any other quantity (e.g.
density, pressure, temperature, concentration...). If we are interested in the laws that govern how
physical quantities change at the material point X (or in a small volume dV which surrounds it), we
exercise the so-called Lagrangian approach. If, on the other hand, we focus on a fixed point in space
x , we use the Eulerian approach. The outcome of both approaches is identical, although the resulting
equations have a different form. We will discuss both approaches in detail in Chapter 3.

2.3 Deformation gradient

The change (deformation) of the configuration of the material in the vicinity of a material point
X , which is located (at the time t ) at the coordinates x = x(t , X ), is described by a tensor F defined as

F (t , X ) =∇x (t , X ) =
(
∂xi

∂X j
(t , X )

)
, (2.5)

which is called the deformation gradient. From the point of view of the theory of transformation of
variables in differential expressions, it is the Jacobi tensor (matrix) of the transformation from the
material coordinates X to spatial coordinates x . Since we assume regularity of the transformation
between the coordinates X and x , there is also an inverse tensor F−1, which can be written

F−1 (t , X ) =
(
∂X i

∂x j
(t , X )

)
, (2.6)

and which expresses the Jacobi tensor of the coordinate transformation from x to X .
The deformation gradient is a fundamental tool for the mathematical description of deformation.

2.4 Integrals and derivatives of vector and tensor fields

Let J = (0, tmax) be a time interval and Ω⊂R3 be a domain. Let

f :J ×Ω→R,

g :J ×Ω→R3,

T :J ×Ω→R3×3,

be a scalar, vector, and tensor field, respectively. We will use the following formalism:

• The nabla (del) operator only works with spatial coordinates

∇=
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
= (∂1,∂2,∂3) = (∂i )

i.e., in accordance with Remark 3, the gradient of a function is given by the expression

∇ f (t , x) =
(
∂ f

∂x1
(t , x) ,

∂ f

∂x2
(t , x) ,

∂ f

∂x3
(t , x)

)T

= (
∂i f

)
.



40 CHAPTER 2. KINEMATICS OF FLUIDS

• Gradient of a vector field g is applied component-wise, i.e.

∇g = (
∂ j gi

)= (∇⊗g
)T .

• The divergence of a vector field is
div g =∇· g = ∂i gi .

• Divergence of a tensor field: the divergence operator ∇· is applied to a formal row vector com-
posed of tensor columns T, i.e.

div T =∇· (T 1,T 2,T 3) =
3∑

j=1

∂T j

∂x j
= (

∂ jτi j
)

.

• Curl of a vector field is given by

curl g =∇×g = εi j k∂k gl .

Theorem. (Helmholtz) Let Ω ⊂ R3 be a bounded domain and f ∈ C2 (Ω)2 is a twice differentiable
vector field defined on Ω. Then there is a scalar field Φ and vector field A such that

f =∇Φ+∇× A.

Remark. Helmholtz’s theorem states that every vector field can be decomposed into a sum of poten-
tial (faithless, irrotational) part ∇Φ fulfilling ∇×(∇Φ) = 0 and a solenoidal (sourceless, divergence-free)
parts ∇× A fulfilling ∇ · (∇× A) = 0. The scalar field Φ is called scalar potential and A is called vec-
tor potential. The proof of the theorem consists in finding a formula for both of these potentials in
integral form.

• Laplace operator ∆ (Laplacian) applicable to both scalar and vector quantities

∆ f (t , x) =∇·∇ f (t , x) =
3∑

i=1

∂2 f

∂x2
i

(t , x) = ∂i i f (t , x) ,

∆g (t , x) =
(∇·∇g (t , x)

)= 3∑
i=1

∂2g

∂x2
i

(t , x) = ∂i i g (t , x) .

• Integral of a vector or tensor field over a spatial domain Ω is understood component-wise and
its result is again a vector or tensor, respectively.

2.5 Material derivative

Consider any quantity w , whose value at material point X and time T is equal to w (T, X ). At a
fixed point x ∈ R3 and time t , its value is W (t , x). For the sake of correctness, we will denote time as
an argument of the function w by the capital letter T and time as argument of W by a lowercase letter
t . Quantity increment w per unit of time at a fixed material point X (at the point that we marked on
the body with a cross and which moves in the course of time) is equal to the partial derivative of the
function w with respect to time, i.e.,

∂w

∂T
(T, X ) .

Similarly, the increment of this quantity per unit of time at a fixed point v space x , which does not
move, is equal to the partial derivative of the function W w.r.t. time, i.e.

∂W

∂t
(t , x) .
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Obviously, these are two generally different values. Let us now see how they are related.
Let us choose a fixed material point X . Its position at time T is x (T, X ), and therefore

w (T, X ) =W (t (T, X ) , x (t , X )) =W (Φ (T, X )) ,

where the inner functionΦ : J ×V0 →J ×R3 has the form

Φ (T, X ) = (t (T, X ) , x1 (T, X ) , x2 (T, X ) , x3 (T, X )) = (T, x1 (T, X ) , x2 (T, X ) , x3 (T, X )) .

It can be seen that the first component of the map Φ is a function t , whose value is based on the
assumption that the passage of time is independent of the choice of coordinates, i.e.,

t (T, X ) = T.

Using different symbols for the components of the argumentΦ and components ofΦ itself will allow
us to correctly apply the chain rule for differentiation of composite functions. It yields

∂w

∂T
(T, X ) =

4∑
k=1

∂W

∂Φk
(Φ (T, X ))

∂Φk

∂T
(T, X )

= ∂W

∂t
(t (T, X ) , x (T, X ))

∂t

∂T
(T, X )+

3∑
k=1

∂W

∂xk
(t (T, X ) , x (T, X )) vk (T, X )

= ∂W

∂t
(T, x (T, X ))+v (T, X ) ·∇W (T, x (T, X ))

= ∂W

∂t
(T, x (T, X ))+V (T, x (T, X )) ·∇W (T, x (T, X )) . (2.7)

After the last modification, all the functions on the right side of (2.7) are expressed using the same
argument - the point (t , x) = (T, x (T, X )). Therefore, one can rewrite (2.7) in operator form

∂w

∂T
(T, X ) =

(
∂

∂t
+V ·∇

)
W

∣∣∣∣
T,x(t ,X )

=:
DW

Dt
(T, x (T, X )) , (2.8)

where the last relation is defined by the so-called material derivative operator

D

Dt
:= ∂

∂t
+V ·∇ = ∂

∂t
+Vi∂i .

For vector quantities, we define the material derivative operator component-wise. In particular,
for the functions

w = (w1, w2, w3) : J ×V0 →R3,

W = (W1,W2,W3) : J ×R3 →R3,

we define (
DW

Dt

)
i
= DWi

Dt

and if

w (T, X ) =W (T, x (T, X ) ,

then
∂w

∂T
(T, X ) = DW

Dt
(T, x (T, X )) .
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2.6 Acceleration of a material point

Material point acceleration a [LT −2] is defined as the time derivative of its velocity, as in the me-
chanics of point particles. In the material description, the acceleration is therefore given by the rela-
tion

a(T, X ) = ∂v

∂T
(T, X ) = ∂2x

∂T 2 (T, X ). (2.9)

Using the material derivative defined by the relation (2.8), it can be written as

a (T, X ) = ∂v

∂T
(T, X ) = DV

Dt
(T, x (T, X )) .

After applying the inverse transformation X = X (t , x), T = T (t , x) = t , we get

a (t , X (t , x)) = DV

Dt
(t , x) . (2.10)

By equality (2.10) , the function DV
Dt represents the acceleration of the material point X , which passes

through the site x at time t . However, that is the definition of a function A, which returns the acceler-
ation value in spatial coordinates t , x . Thus

A (t , x) = DV

Dt
(t , x) .

Remark. This result can also be formulated in general terms. If the quantity w̃ described in the ma-
terial coordinates by a function w̃ (T, X ) is related to the quantity w by the relationship

w̃ (T, X ) = ∂w

∂T
(T, X ) ,

then the same quantity is described in spatial coordinates by means of the functions W̃ ,W related by

W̃ (t , x) = DW

Dt
(t , x) .

2.7 Streamlines and trajectories

At the given time t ∈J , the velocity field defined in the domain V (t ) is a function

V (t , ·) : V (t ) → R3.

A curve that is at time t tangent to the velocity field at every point V is called a streamline. Let us pick
a point x0 ∈V (t ) and consider a curve ϕ described parametrically using a map

ϕ= (
s 7→ϕ (s)

)
:R→R3.

Then ifϕ is the solution of the Cauchy problem (ODE system with an initial condition)

dϕ

ds
=V

(
t ,ϕ

)
, (2.11)

ϕ (0) = x0, (2.12)

then ϕ is the streamline passing through the point x0. In the equation (2.11), t is a fixed parameter.

Remark. The parameterization is not given uniquely, and therefore one can substitute s = h (s̃) and
find other ODE systems whose solution describes the same curve ϕ.
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Now let us choose a point X 0 ∈V0. A curve describing its movement over time

ϕ̃= {
x (t , X 0)| t ∈J

}
is called a trajectory of the point X 0 and its (natural) parameterization

ϕ̃= (t 7→ x (t , X 0)) : J →R3

satisfies the Cauchy problem (see (2.2) and (2.4))

dϕ̃

dt
=V

(
t ,ϕ̃

)= v (t , X 0) , (2.13)

ϕ (0) = X 0. (2.14)

Unlike in (2.11), t appears in the equation (2.13) as an independent variable. Therefore, streamlines
and trajectories (curves ϕ and ϕ̃) are generally different. Only if the velocity field is V independent of
time, streamlines and trajectories coincide. In that case, we speak about stationary (steady) flow.

2.8 Continuum hypothesis

Let us consider on R3 the classical Lebesgue measure m3 and let there exist another measure M .
The material body V is considered a continuum [RG14, Chapter 1], if for each (m3-measurable) subset
A ⊂V

m3 (A) = 0 =⇒ M (A) = 0

holds (i.e. the measure M is continuous with respect to m3) and the number M (A) has a physical
meaning of mass of the set A. Next, let Ψ and Ψ, respectively, be the measure (and vector measure)
such that for each point x ∈V 0, there exist the limits

ψ (x) = lim
R→0+

Ψ (BR (x))

M (BR (x))
,

and

ψ (x) = lim
R→0+

Ψ (BR (x))

M (BR (x))
,

respectively, where
BR (x) =

{
v ∈R3

∣∣ |v −x | < R
}

.

The functionΨ (andΨ) is then called an extensive scalar (or vector) physical quantity. For any V ⊂V ,
it then holds that

Ψ (V0) =
∫
V0

ψ (x)dM =
∫
V0

ψ (x)ϱ (x)dx ,

Ψ (V0) =
∫
V0

ψ (x)dM =
∫
V0

ψ (x)ϱ (x)dx ,

where

ϱ (x) = lim
R→0+

M (BR (x))
4
3πR3

is the mass density.

Remark.

ψ= dΨ

dM
, andψ= dΨ

dM
are the Radon-Nikodym derivatives of the measures Ψ andΨ, respectively.
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Figure 2.2: Euler’s approach: fixed volume V and material body V (t ) moving through time.

For example, for a vector measure expressing the linear momentum P , we obtain the „specific
momentum“, i.e., the velocity at a point x defined as

V (x) = lim
R→0+

P (BR (x))

M (BR (x))
.

2.9 Conservation of mass

We first derive the mathematical representation of the law of conservation of mass. We will show
here several approaches with the help of which the result can be obtained, and at the same time we
verify that they all lead to the same conclusion.

2.9.1 Euler’s approach using a finite volume

As we have already outlined in Section 2.2.1, Euler’s approach to describing the dynamics of the
continuum consists in describing the laws that govern the development of physical quantities at a
fixed point in space x , or, respectively, in a fixed volume V ⊂R3 with a boundary ∂V (see Figure 2.2 ).
Law of conservation of mass in the volume V can be formulated as

mass loss in the volume V is equal to the mass flux across the boundary ∂V in the direction out
of V .

If ϱ (t , x) [kg ·m−3] is a function describing the density of the material at a spatial point x and at time
t , then the total mass M [kg] contained in the volume V is

M (t ) =
∫
V

ϱ (t , x)dx

and its decrease per unit time is equal to

−dM

dt
(t ) . (2.15)

Now consider an infinitesimally small surface dS ⊂ ∂V with a normal n, pointing out of the volume V

(Figure 2.3 ). For all points x ∈ dS, we consider the same velocity V (t , x). The projection of velocity
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Figure 2.3: Euler’s approach: fixed volume V with a boundary ∂V , surface dS with the outward point-
ing normal n.

into the direction perpendicular to dS is then V ·n and the mass that passes through the surface dS
per unit time is equal to

ϱV ·ndS.

The total mass flow out of the volume V across the boundary ∂V per unit time is equal to the surface
integral of II. kind ∫

∂V

ϱV ·ndS =
∫
∂V

ϱV ·dS. (2.16)

The mathematical expression of the law of conservation of matter therefore equates relations (2.15)
and (2.16) and leads to the continuity equation in integral conservative form

d

dt

∫
V

ϱdx +
∫
∂V

ϱV ·ndS = 0. (2.17)

This equation can be further modified by first applying the Gauss theorem (Theorem 7, Chapter 1)
and theorem about differentiation of an integral with respect to a parameter (Theorem 4), gradually
obtaining

d

dt

∫
V

ϱdx +
∫
V

∇· (ϱV
)

dx = 0,

∫
V

[
∂ϱ

∂t
+∇· (ϱV

)]
dx = 0. (2.18)

Now we consider that the volume V is chosen completely arbitrarily. Therefore, the integral (2.18) can
only be equal to zero provided that the integrand is also equal to zero in the entire region where the
material body is located, i.e.,

∂ϱ

∂t
+∇· (ϱV

)= ∂ϱ

∂t
+∂ j

(
ϱV j

)= 0. (2.19)

Equation (2.19) is a partial differential equation and is called the continuity equation in conservative
(differential) form.
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Figure 2.4: Lagrangian approach: Material body V (t ) and its evolution over time. Within V (t ), the
control volume V (t ) is chosen, which moves together with the material body.

2.9.2 Lagrangian approach using a finite volume

For the sake of interest, we will proceed to the derivation of the continuity equation using the
Lagrangian approach, which follows the motion of a fixed material point, or a set of material points
V0 ⊂V0 (giant. 2.4 ). The total mass in this volume is

M =
∫
V0

ρ (0, X )dX =
∫
V0

ϱ (0, x)dx .

Over time, a set of material points with this (still the same) mass M changes its shape and size, so it
holds at the same time that

M =
∫

V (t )

ϱ (t , x)dx (2.20)

for each t ∈ J . The region of integration in (2.20) changes over time, and generally V (t ) ⊂ V (t ) (see
Section 2.2). By moving from spatial coordinates x to material coordinates X , however, we get the
integral over the time-invariant volume V0:

M =
∫

V (t )

ϱ (t , x)dx =
∫
V0

ϱ (t , x (t , X ))

∣∣∣∣det
∂x

∂X

∣∣∣∣dX =
∫
V0

ρ (t , X ) |detF|dX , (2.21)

considering that the Jacobian of the transformation detF = det
(
∂x
∂X

)
is nonzero by the assumption

(2.3) and has the same sign for all X ∈V0. Hence, the absolute value can be removed and

±M =
∫
V0

ρ (t , X )detFdX

holds. By differentiating this equality with respect to time, we obtain the continuity equation in non-
conservative integral form

d

dt

∫
V0

ρ (t , X )detFdX = 0. (2.22)
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Similarly to part 2.9.1, we can derive the appropriate differential form of this equation. By swap-
ping the integral and the time derivative according to Theorem 4 and considering that the volume V0

was selected completely arbitrarily, we get the equality

∂
(
ρdetF

)
∂t

= 0, (2.23)

which is the continuity equation in the non-conservative (differential) form expressed in material co-
ordinates.

Let us show that equation (2.23) is equivalent to equation (2.19) derived in Section 2.9.1. We
perform the time derivative of the product and obtain

∂ρ

∂t
detF+ρ∂detF

∂t
= 0. (2.24)

Now we will use the relation ((2.26) proved as Lemma 74 in the following section 2.10)

∂detF

∂t
= detF∇·V .

After dividing by the nonzero detF, we obtain the equality

∂ρ

∂t
+ρ∇·V = 0

and finally we apply the definition of the material derivative (2.8) to get

Dϱ

Dt
+ϱ∇·V = 0, (2.25)

which is the continuity equation in the non-conservative (differential) form expressed in spatial coor-
dinates. Now it is easy to get the relationship (2.19), when we only break down the material derivative

Dϱ

Dt
+∇·V = ∂ϱ

∂t
+V ·∇ϱ+ϱ∇·V = ∂ϱ

∂t
+∇· (ϱV

)= 0.

3.38

2.10 Reynolds transport theorem

First, we show an important auxiliary statement:

Lemma 74. It holds that
∂detF

∂t
= detF∇·V . (2.26)

Proof. Assuming sufficient differentiability of the function x (t , X ), the assertion (2.26) can be derived
from the expression of the determinant (1.18) and from the definition F (2.5), i.e.

detF = 1

3!
εI JK εi j k

∂xI

∂Xi

∂x J

∂X j

∂xK

∂Xk
.
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using substitution of partial derivatives ∂/∂t and ∂/∂X∗ we gradually manipulate the expression as
follows:

∂detF

∂t
= 1

3!
εI JK εi j k

∂

∂t

(
∂xI

∂Xi

∂x J

∂X j

∂xK

∂Xk

)

= 1

3!
εI JK εi j k

 ∂v I

∂Xi

∂x J

∂X j

∂xK

∂Xk
+ ∂xI

∂Xi

∂v J

∂X j

∂xK

∂Xk︸ ︷︷ ︸
index renamingI↔J ,i↔ j

+ ∂xI

∂Xi

∂x J

∂X j

∂vK

∂Xk︸ ︷︷ ︸
index renamingI↔K ,i↔k


︸ ︷︷ ︸

=⇒ 3×the same expression

(2.27)

= 1

2
εI JK εi j k

∂v I

∂Xi

∂x J

∂X j

∂xK

∂Xk
= 1

2
εI JK εi j k

∂VI

∂xℓ

∂xℓ
∂Xi

∂x J

∂X j

∂xK

∂Xk
. (2.28)

By the definition of the matrix F−1 and expressing its elements using the cofactors (1.19), we obtain

∂Xi

∂xI
= 1

detF
∆I i =

1

detF

1

2
εI JK εi j k

∂x J

∂X j

∂xK

∂Xk
.

After substituting into (2.28), we get

∂detF

∂t
= detF

∂Xi

∂xI

∂VI

∂xℓ

∂xℓ
∂Xi

= detF
∂Xi

∂xI

∂xℓ
∂Xi︸ ︷︷ ︸

δIℓ

∂VI

∂xℓ
= detFδIℓ

∂VI

∂xℓ
= detF

∂VI

∂xI
= detF∇·V .

Now let V0 ⊂ V0 be a fixed control volume of the material body and denote V (t ) = x (t ,V0). Let
φ : (0,T )×V0 → R be an arbitrary function and we define Φ(t , x) = φ (t , X ) where x = x (t , X ). Then it
holds that

d

dt

∫
V (t )

Φ (t , x)dx = d

dt

∫
V0

Φ (t , x (t , X )) |detF (t , X )|dX = d

dt

∫
V0

φ |detF|
∣∣dX

=
∫
V0

∂

∂t

(
φ (t , X ) |detF|)dX =

∫
V0

∂φ

∂t
|detF|+φ (t , X )

∂ |detF|
∂t

dX

=
∫
V0

(
DΦ

Dt
+Φ∇·V

)∣∣∣∣
(t ,x(t ,X ))

|detF|dX

=
∫

V (t )

DΦ

Dt
+Φ∇·V

∣∣∣∣
(t ,x)

dx . (2.29)

After breaking down the material derivative operator, we get another useful form of the equality (2.29)

d

dt

∫
V (t )

Φ (t , x)dx =
∫

V (t )

∂Φ

∂t
+V ·∇Φ+Φ∇·V dx =

∫
V (t )

∂Φ

∂t
+∇· (ΦV )dx . (2.30)

Both (2.29) and (2.30) are referred to as the Reynolds transport theorem.
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2.10.1 Continuity equation as a consequence of the Reynolds transport theorem

The law of conservation of mass in any volume V0 ⊂V0, which in time t > 0 transforms into volume
V (t ), can be formulated as

M (V0) = M (V (t )) =
∫

V (t )

ϱ (t , x)dx = konst.,

from which
d

dt

∫
V (t )

ϱ (t , x)dx = 0

Substituting into (2.29) or (2.30), respectively, with the choice Φ= ϱ, we immediately receive∫
V (t )

Dϱ

Dt
+ϱ∇·V dx =

∫
V (t )

∂ϱ

∂t
+∇· (ϱV

)
dx = 0

regardless of the choice V0 (and hence regardless of the choice of V (t ) as well), which means that

Dϱ

Dt
+ϱ∇·V = ∂ϱ

∂t
+∇· (ϱV

)= 0.

This is a continuity equation in the forms (2.25) and (2.19), respectively.

2.10.2 Reynolds transport theorem for specific quantities

Let F : (0,T )×R3 → R be an arbitrary function (a physical quantity defined per unit mass, i.e. a
specific quantity). Then substituting Φ= ϱF int (2.29), we get

d

dt

∫
V (t )

ϱF dx =
∫

V (t )

D
(
ϱF

)
Dt

+ϱF∇·V dx . =
∫

V (t )

ϱ
DF

Dt
+ F

(
Dϱ

Dt
+ϱ∇·V

)
︸ ︷︷ ︸

=0 by the continuity eq. (2.25)

dx =
∫

V (t )

ϱ
DF

Dt
dx . (2.31)

2.11 Description of deformation

In this section, we derive the form of some mathematical objects that describe deformation of the
fluid during the flow. The study of these objects falls into the field of linear and general elasticity, from
which, however, we only select the knowledge necessary for the interpretation of fluid dynamics in
Chapter 3. In some more complex derivations, we will highlight some terms in the equations in color
for clarity, while always adjusting the expression marked in red in order to obtain the expression in
blue.

The relative displacement vector u (in the spatial description) is defined as

u(t , X ) = x(t , X )−x(0, X ) = x(t , X )−X = (xk (t , X )−Xk )ek .

Consider two points X ,Y ∈V0, whose mutual displacement will be denoted as

dX = Y −X .

At time t , these points get to a position

x = x (t , X ) = X +u (t , X ) ,

y = x (t ,Y ) = Y +u (t ,Y ) . (2.32)
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Their relative positions at time 0 and at time t (with dependence on t now being omitted for clarity)
are bound by

dX = Y −X ,

dx = y −x = x (t , X +dX )−x (t , X )

= x (t , X )+∇x (t , X ) ·dX+o (dX )−x (t , X )

=∇x (t , X ) ·dX+o (dX ) = F (t , X ) ·dX+o (dX ), (2.33)

where we used the Taylor expansion x (t , ·) up to the 1st order, i.e.

lim
dX→0

o (dX )

∥dX ∥ = 0

holds. By writing down (2.33) component-wise, we get

dxi =
∂xi

∂X j
dX j+o (dX ). (2.34)

Next, we define (at the point (t , X ))

H =∇u =
(
∂ui

∂X j

)
=

(
∂ (xi −Xi )

∂X j

)
=

(
∂xi

∂X j
−δi j

)
= F− I (2.35)

and substituting (2.35) to (2.33), we get the expression using the displacement vector

dx = (H+ I) ·dX+o (dX ) = dX +∇u ·dX+o (dX ) (2.36)

2.11.1 Lagrangian finite strain tensor

For the magnitude of the mutual position vector, i.e. the distance of the points x , y , we have

∥dx∥2 = ∥dX +∇u ·dX+o (dX )∥2 =
(
dXi +

∂ui

∂X j
dX j+o (dX )

)(
dXi +

∂ui

∂Xk
dXk+o (dX )

)
= dXi dXi +

∂ui

∂X j
dX j dXi +

∂ui

∂Xk
dXi dXk︸ ︷︷ ︸

index naming:i→ j ,k→i

+ ∂ui

∂X j

∂ui

∂Xk
dX j dXk︸ ︷︷ ︸

index naming: i↔k

+o (dX )

= ∥dX ∥2 + ∂ui

∂X j
dX j dXi +

∂u j

∂Xi
dX j dXi +

∂uk

∂X j

∂uk

∂Xi
dX j dXi+o (dX )

= ∥dX ∥2 +2ϵi j dXi dX j+o (dX ), (2.37)

where e is called the Lagrangian finite strain tensor (or the Green-Lagrange strain tensor)

e =(
ϵi j

)
, ϵi j =

1

2

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂uk

∂X j

∂uk

∂Xi

)
. (2.38)

Neglecting the quadratic terms in (2.38), we obtain a symmetric small strain tensor

ẽ =(
ϵ̃i j

)
, ϵ̃i j =

1

2

(
∂ui

∂X j
+ ∂u j

∂Xi

)
. (2.39)

However, according to (1.15), it is nothing but the symmetric part of the tensor ∇u.
After substituting into (2.36) and utilizing (1.15) and (1.16), we get

dx+o (dX ) = dX +∇u ·dX = dX + (∇u)sym ·dX + (∇u)skew ·dX = dX + ẽ ·dX +w ×dX ,
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where according to (1.15) and (1.17), one can write

(∇u)skew = 1

2

(∇u −∇uT)= (
1

2

(
∂ui

∂X j
− ∂u j

∂Xi

))
=

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ,

where
w = rot u.

Going back to (2.32) and subtracting both equations, we obtain

u (t ,Y ) = u (t , X )+
(

y −x
)− (Y −X )

= u (t , X )+dx −dX

= u (t , X )+ ẽ ·dX +w ×dX+o (dX ).

This means that the movement of Y can be decomposed into

• u (t , X ) . . . displacement of any reference point X ,

• ẽ · dX . . . dilation/contraction of the position of Y relative to the position of X (Symmetric
tensor ẽ is diagonalizable, has real eigenvalues and their corresponding three eigenvectors rep-
resent the three main dilation/contraction directions)

• w ×dX . . . rotation of Y around the point X

• o (dX ) . . . deformation of an order higher than the distance of the points X , Y

2.11.2 Strain rate tensor

By differentiating the equality (2.33) with respect to time, we get the rate of change of dx per unit
time (for fixed X ,Y )

d

dt
(dx) = d

dt
∇u (t , X ) ·dX =∇v (t , X ) ·dX =

(
∂vi

∂X j
dX j

)
,

where the tensor ∇v (t , X ) =
(
∂vi
∂X j

)
is the velocity gradient [Rud19] in material coordinates. With the

use of (2.34), one can proceed further as

d

dt
(dx) =

(
∂vi

∂X j
dX j

)
=

(
∂Vi

∂xk

∂xk

∂X j
dX j

)
=

(
∂Vi

∂xk
dxk

)
+o (dX ) =

(
∂Vi

∂x j
dx j

)
+o (dX ) =∇V (t , x)·dx+o (dX ),

where the tensor ∇V (t , x) =
(
∂Vi
∂x j

)
is the velocity gradient in the current coordinates.

The relative rate of dilation of the line segment between material points X ,Y , located at positions
x , y in the mutual distance ∥dx∥ at time t , can be expressed as

d
dt ∥dx∥
∥dx∥ = 1

2

d
dt

(∥dx∥2)
∥dx∥2 = 1

2

d
dt

(
2ϵi j dXi dX j

)
∥dx∥2 = 1

2

2ϵ̇i j dXi dX j

∥dx∥2 . (2.40)

We further modify the expression

2ϵ̇i j dXi dX j =
d

dt

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂uk

∂X j

∂uk

∂Xi

)
dXi dX j

=
(
∂vi

∂X j
+ ∂v j

∂Xi
+ ∂vk

∂X j

∂uk

∂Xi
+ ∂uk

∂X j

∂vk

∂Xi

)
dXi dX j

= 2

(
∂v j

∂Xi
+ ∂vk

∂X j

∂uk

∂Xi

)
dXi dX j .
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Using (2.35), we continue as

2ϵ̇i j dXi dX j = 2

(
∂v j

∂Xi
+ ∂vk

∂X j

(
∂xk

∂Xi
−δi k

))
dXi dX j = 2

(
∂v j

∂Xi
− ∂vi

∂X j
+ ∂vk

∂X j

∂xk

∂Xi

)
dXi dX j

= 2

∂v j

∂Xi
dXi dX j −

∂vi

∂X j
dXi dX j︸ ︷︷ ︸

=0 (just renaming of i , j )

+ ∂vk

∂X j

∂xk

∂Xi
dXi dX j


= 2

∂vk

∂X j

∂xk

∂Xi
dXi dX j = 2

∂Vk

∂xℓ

∂xℓ

∂X j

∂xk

∂Xi
dXi dX j = 2

∂Vk

∂xℓ

∂xk

∂Xi
dXi

∂xℓ

∂X j
dX j

and using (2.34), we finally get

2ϵ̇i j dXi dX j = 2
∂Vk

∂xℓ
dxk dxl+o

(∥dx∥2) =
(k,l )æ(i , j) a ( j ,i)

∂Vi

∂x j
dxi dx j +

∂Vi

∂x j
dxi dx j+o

(∥dx∥2)
=

(
∂Vi

∂x j
+ ∂V j

∂xi

)
dxi dx j+o

(∥dx∥2).

After substituting back into (2.40), we have

d
dt ∥dx∥
∥dx∥ = 1

2

(
∂Vi

∂x j
+ ∂V j

∂xi

)
dxi dx j

dxk dxk
+O (dx) = Dα+O (dx),

where

D = (
di j

)= (
1

2

(
∂Vi

∂x j
+ ∂V j

∂xi

))
= 1

2

[∇V + (∇V )T]
(2.41)

is the strain rate tensor in the current coordinates and α is a unit vector in the direction dx . D is the
symmetric part of the velocity gradient tensor ∇V .
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3
Fluid dynamics equations

Mathematical description of continuum dynamics, i.e. description of the movement and defor-
mation of a given material body depending on the action of external and internal forces, can be de-
rived from the laws of conservation in classical mechanics, i.e.

1. the law of conservation of mass (Lomonosov 1758, Lavoisier 1774) - see the continuity equation
(3),

2. of the law of conservation of linear momentum (a direct consequence of Newton’s three laws of
motion)

3. the law of conservation of energy (the first law of thermodynamics),

and, in addition, from the physical properties of the material.

3.1 Forces and II. Newton’s law in a fluid

• postulate: in the continuum, there are only surface and body (volume) forces (it should be
possible to prove - see [Tru92])

• the specific body force F or the body force intensity F V defined as the limit

F (x) = lim
R→0+

F V (BR (x))

M (BR (x))
= lim

R→0+
F V (BR (x))

4
3πR3

4
3πR3

M (BR (x))
= 1

ϱ (x)
lim

R→0+
F V (BR (x))

4
3πR3

.

• the surface force per unit area acting at the surface around the a point x with the normal vector
n (x) is

T (t , x ,n (x)) .

The fact that T does not depend on other properties of the surface, e.g., on the mean curvature
κ=∇·n or higher derivatives of the normal vector, is stated by the so-called Cauchy’s hypothe-
sis. In 1957, Walter Noll proved this hypothesis using Cauchy’s fundamental lemma (which we
discuss below) [Tru92], [Gur81, p. 97].

• internal and external forces

– internal force acts within the studied system

53
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Figure 3.1: On derivation of Cauchy’s lemma, i.e. the principle of action and reaction of surface forces

– external force acts through objects outside the studied system

We formulate the laws of conservation of linear momentum and angular momentum (i.e., the laws
of force) in a general form. Let again V0 ⊂ V0 be a fixed but arbitrarily chosen control volume of the
material body. The momentum of the mass contained within this volume and located in the region
V (t ) at time t , is subject to the law of force

d

dt

∫
V (t )

ϱV dx =
∫

∂V (t )

T (t , x ,n)dS +
∫

V (t )

ϱF dx (3.1)

and the angular momentum of this mass (with respect to the origin of the coordinate system1) satis-
fies

d

dt

∫
V (t )

ϱx ×V dx =
∫

∂V (t )

x ×T (t , x ,n)dS +
∫

V (t )

ϱx ×F dx . (3.2)

From the fact that relation (3.1) is valid regardless of the selection of V0, we arrive at the differential
equations describing the balance (law of conservation) of linear momentum. Relationship (3.2) does
not lead to another independent equation describing the flow, because the angular momentum of
each finite volume V0 can be described using the linear momenta of elementary subvolumes dV 0 ⊂ V0,
satisfying (3.1). However, relationship (3.2) taken for |V0| → 0 has consequences for the form of the
force T (t , x ,n), which we will show shortly.

3.2 Stress tensor

Consider the division of volume V0 into two parts V0 = V1 ∪ V2 and let us denote the common
boundary in between by Σ. At time t > 0, the respective sets have the shape x (t ,V1), x (t ,V2), x (t ,Σ). If
n is the outer normal to x (t ,V1) at point ξ ∈x (t ,Σ), then −n is the outer normal to x (t ,V2) at the same
point. If we formulate (3.1) separately for V1,V2, we get

d

dt

∫
x(t ,V1)

ϱV dx =
∫

x(t ,Σ)

T (t , x ,n)dS +
∫

x(t ,S1)

T (t , x ,n)dS +
∫

x(t ,V1)

ϱF dx , (3.3)

d

dt

∫
x(t ,V2)

ϱV dx =
∫

x(t ,Σ)

T (t , x ,−n)dS +
∫

x(t ,S2)

T (t , x ,n)dS +
∫

x(t ,V2)

ϱF dx . (3.4)

1Momentum balance relative to any point x0 we would gain by replacing x expression (x −x0) in (3.2).
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Figure 3.2: A tetrahedron argument to derive the existence of the stress tensor. Without loss of gener-
ality, one of the vertices of the tetrahedron is placed at the origin of the coordinate system, i.e. x ≡ 0.

By summing (3.3)-(3.4) we obtain

d

dt

∫
V (t )

ϱV dx =
∫

x(t ,Σ)

[T (t , x ,n)+T (t , x ,−n)]dS +
∫

∂V (t )

T (t , x ,n)dS +
∫

V (t )

ϱF dx (3.5)

and subtracting (3.1) finally yields∫
x(t ,Σ)

[T (t , x ,n)+T (t , x ,−n)]dS = 0.

Since the respective volume V0 and its cut Σwere chosen arbitrarily,

T (t , x ,−n) =−T (t , x ,n) ∀x ,∀n

must hold, which is called Cauchy’s fundamental lemma and is de facto the III. Newton’s law (law of
action and reaction).

Let us now imagine such a control volume V0 that its shape at time t is a tetrahedron V := V (t ) =
x (t ,V0), with three faces S1,S2,S3 perpendicular to the axes of the coordinate system (Fig. 3.2). The
outward-pointing normal to the face Si is ni = −e i . The fourth face S has a unit outward-pointing
normal vector n. According to the mean value theorem, the action of surface forces on the tetrahe-
dron can be expressed as∫

∂V

T (t , x ,n (x))dS = T (t ,ξ,n) |S|+T
(
t ,ξ1,n1

) |S1|+T
(
t ,ξ2,n2

) |S2|+T
(
t ,ξ3,n3

) |S3| , (3.6)

where ξ j ∈ S j , ξ ∈ S. Further:

• From Cauchy’s lemma, it holds that T
(
t ,ξ j ,n j

)= T
(
t ,ξ j ,−e j

)=−T
(
t ,ξ j ,e j

)
.
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• The surface S j is the projection of the surface S to the plane with the normal e j , and therefore
its area satisfies ∣∣S j

∣∣
|S| = n j ,

where n = (
n j

)
. n j is the projection of the normal vector n to the direction e j .

Substituting these facts into (3.6), we get according to (3.1) the momentum balance for the tetrahe-
dron V as

d

dt

(
ρv

)∣∣
(t ,ξV ) |V | = (

T (t ,ξ,n)−T
(
t ,ξ1,e1

)
n1 −T

(
t ,ξ2,e2

)
n2 −T

(
t ,ξ3,e3

)
n3

) |S|+ ϱF
∣∣(

t ,ξ̃V

) |V | ,
(3.7)

where the mean value theorem for volume integrals was again used, i.e. ∈ V0, ξV , ξ̃V ∈ V . Now let us
scale all sides of the tetrahedron V by the factor ϵ. Since |S| =O

(
ϵ2

)
and |V | =O

(
ϵ3

)= o (ϵ), by dividing
(3.7) by the number ϵ2 and taking the limits ϵ→ 0, we get

0 = T (t , x ,n)−T (t , x ,e1)n1 −T (t , x ,e2)n2 −T (t , x ,e3)n3,

or
T (t , x ,n) = T (t , x) ·n, (3.8)

where
T (t , x) =

(
T (t , x ,e1) T (t , x ,e2) T (t , x ,e3)

)= (
T

(
t , x ,e j

)
i

)= (
τi j

)
is the stress tensor whose j -th column expresses the surface force vector acting on the unit surface
with normal e j .

3.2.1 Symmetry of the stress tensor

With the use of (3.8), the surface integral in (3.2) can be rewritten into the form∫
∂V (t )

x ×T (t , x ,n)dS =
∫

∂V (t )

x × (T ·n)dS =
∫

∂V (t )

εi j k x j (T ·n)k e i dS = εi j k e i

∫
∂V (t )

x jτkl nl dS.

. . .by Green’s formula (Theorem 5). . .

= εi j k e i

∫
V (t )

∂

∂xl

(
x jτkl

)
dx = εi j k e i

∫
V (t )

(
δ j lτkl +x j

∂τkl

∂xl

)
dx

= εi j k e i

∫
V (t )

(
τk j +x j

∂τkl

∂xl

)
dx . (3.9)

At the left hand side of (3.2), we use the Reynolds transport theorem for specific quantities (2.31) and
we get

d

dt

∫
V (t )

ϱx ×V dx =
∫

V (t )

ϱ
D

Dt
(x ×V )dx =

∫
V (t )

ϱ

Dx

Dt
×V︸ ︷︷ ︸

=V ×V =0

+x × DV

Dt

dx =
∫

V (t )

ϱ

(
x × DV

Dt

)
dx . (3.10)

After the replacement of both terms (3.9) and (3.10) rewritten in this way back to (3.2), we already
have all terms under the volume integral∫

V (t )

ϱ

(
x × DV

Dt

)
dx =

∫
V (t )

εi j k e i

(
τk j +x j

∂τkl

∂xl

)
dx +

∫
V (t )

ϱx ×F dx . (3.11)
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Now let us denote ϵ = diam V (t ) and without loss of generality, let us choose V0 such that 0 ∈ V (t ).
This only means that we represent the angular momentum about a point that is inside V (t ), which
corresponds to the appropriate choice of x0 in (3.2) - see Remark 1 on page 54. Then of course ∥x∥ =
O (ϵ). If we divide (3.11) by ϵ3, we scale the volume V (t ) around the point 0 (=x0) and take a limit
transition for ϵ→ 0, all terms in (3.11) multiplied by x will have a limit equal to zero, leaving only one
term for which, therefore,

εi j k e iτk j
∣∣
(t ,x0) = 0

must hold. So component-wise, we have

ε1 j kτk j = 0 ⇐⇒ τ23 = τ32,

ε2 j kτk j = 0 ⇐⇒ τ13 = τ31,

ε3 j kτk j = 0 ⇐⇒ τ12 = τ21,

which means that the stress tensor T is symmetric. Hence, it has real eigenvalues and three mutually
perpendicular eigenvectors which are called principal stresses and principal stress directions, respec-
tively.

3.3 Equation of the momentum conservation law in general form

Let us take the equation

d

dt

∫
V (t )

ϱV dx =
∫

∂V (t )

T (t , x ,n)dS +
∫

V (t )

ϱF dx . (3.1)

The i -th component of this vector equation indicates the balance of the i -th momentum component,
i.e.

d

dt

∫
V (t )

ϱVi dx =
∫

∂V (t )

Ti (t , x ,n)dS +
∫

V (t )

ϱFi dx . (3.12)

Now we use the Reynolds transport theorem with the choice Φ= ϱVi and relationship 3.8. Ny substi-
tuting into (3.12), we get∫

V (t )

∂

∂t

(
ϱVi

)+∇· (ϱVi V
)

dx =
∫

∂V (t )

(T (t , x) ·n)i dS +
∫

V (t )

ϱFi dx ,

which can also be written using Einstein summation as∫
V (t )

∂

∂t

(
ϱVi

)+∂ j
(
ϱVi V j

)
dx =

∫
∂V (t )

τi j n j dS +
∫

V (t )

ϱFi dx , (3.13)

Next, we apply Green’s formula to the surface integral in (3.13), which gives∫
V (t )

∂

∂t

(
ϱVi

)+∂ j
(
ϱVi V j

)
dx =

∫
V (t )

∂ jτi j dx +
∫

V (t )

ϱFi dx .

Given an arbitrary choice of the volume V , equality of integrands must also hold, i.e.,

∂
(
ϱVi

)
∂t

+∂ j
(
ϱVi V j

)= ∂ jτi j +ϱFi , i ∈ {1,2,3} , (3.14)
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which is the law of conservation of linear momentum in conservative (differential) form for a general
fluid. Using Vi V j = (V ⊗V )i j , the system of equations (3.14) can also be rewritten in vector form

∂
(
ρV

)
∂t

+∇· (ϱV ⊗V
)=∇·T+ϱF . (3.15)

Alternatively, instead of (2.30), it is possible to use the Reynolds transport theorem for specific quan-
tities (2.31) to manipulate the left hand side of (3.12), and thereby obtain the law of conservation of
linear momentum in a non-conservative form

ϱ
DVi

Dt
= ∂ jτi j +ϱFi , i ∈ {1,2,3} . (3.16)

or, respectively, in vector form

ϱ
DV

Dt
=∇·T+ϱF . (3.17)

3.4 Simple fluids

The fluid is called simple, if the stress tensor (3.8) has the form

T =−PI+TD (3.18)

where
TD = (

τ̃i j
)

(3.19)

is called the tensor of viscous stresses, or the dynamic/viscous stress tensor. In addition, it must depend
on t , x only through the velocity of the fluid and its derivatives and TD = 0 must hold whenever V and
its derivatives are equal to zero. A scalar quantity P is called the thermodynamic or hydrostatic pres-
sure [Haz13], which corresponds to the force per unit area acting perpendicularly to the given surface
in a material body that is at rest. It satisfies the general relation P = P

(
ϱ,T

)
, where T is the abso-

lute (thermodynamic) temperature, as given by the fluid’s equation of state (see section 6.2.1). The
law of conservation of linear momentum for a simple fluid has the form (conservative, respectively
non-conservative)

∂
(
ϱVi

)
∂t

+∂ j
(
ϱVi V j

)=
ϱ

DVi

Dt
=−∂i P +∂ j τ̃i j +ϱFi , i ∈ {1,2,3} , (3.20)

or, respectively, in vector form

∂
(
ρV

)
∂t

+∇· (ϱV ⊗V
)=

ϱ
DV

Dt
=−∇P +∇·TD +ϱF . (3.21)

Our further study will be limited to simple fluids.
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3.5 Newtonian fluids and Navier-Stokes equations

In this section, we derive the constitutive relations for the viscous stress tensor TD for the so-called
Newtonian fluids, which is a model applicable to a number of fluids often encountered in practice
(air, water, oil, . . . ). However, the theory of constitutive relations can be built in a much more rigorous
way, which is beyond the scope of this subject [Mar11, Haz13].

3.5.1 Objective quantities

The form of the stress tensor (and in general other thermodynamic quantities such as Helmholtz
free energy, which we do not consider here), depends on the particular material on intensive physi-
cal quantities, which are objective [Haz13, Chapter 5], i.e. independent of the transformation of the
coordinate system in the form

x ′ (t ) = Q (t ) x +C (t ) , (3.22)

where C is the translation vector a Q is a time-dependent orthogonal transformation. A vector quan-
tity A is called objective if its magnitude does not change by the transformation of coordinates. Specif-
ically, for the mutual position vector

A = x − y

it holds by the use of (3.22) that
A′ = Q (t ) A,

from which (using QTQ = I) it follows that ∥∥A′∥∥2 = ∥A∥2 .

Similarly, the tensor M (as a matrix - see section 1.2.8) is objective if and only if it transforms objective
vectors into objective ones, i.e.

M′A′ = Q (t )MA,

from which
M′ = QTMQ. (3.23)

On the other hand, e.g., velocity and acceleration vectors are not objective. Using (3.23), it can be
shown that the velocity gradient ∇V is not an objective quantity, whereas its symmetric part, i.e. the
strain rate tensor D given by the relation (2.41), is objective. Therefore, we will consider the depen-
dence of TD on the rate of mechanical deformation only through D.

3.5.2 Newtonian fluids

Let us assume that TD is dependent only on the strain rate tensor D (i.e. independent of, e.g.,
the temperature gradient). In addition, let us assume that the fluid has no internal structure and is
so-called isotropic (its properties are independent of direction). This means that TD is an isotropic
tensor function of D. For any n ∈N, the function F (D) = Dn = DDD · · ·D︸ ︷︷ ︸

n×
is obviously isotropic, as by

Definition (1.20), it is true for any orthogonal Q that

QTF (D)Q = QTDnQ = (
QTDQ

)n = F
(
QTDQ

)
.

In addition, the tensor D is symmetric, so every power of it also satisfies (Dn)T = Dn . Let us consider
the dependence in the form of a finite sum [Haz13, Chapter 7]

TD (D) =
∑
n
α̃nDn ,
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where α̃n are numbers that can no longer depend on the tensor elements D = (
di j

)
in a specific basis,

but they may still depend on its invariants. Without loss of generality, dependence on the principal
invariants

α̃= α̃ (DI1, DI2, DI3)

can be assumed (see Section 1.2.10), as any other invariant can be calculated from them by a formula
independent of D. Then TD is a symmetric tensor and also is an isotropic function of D. According to
the Cayley-Hamilton theorem,

l (D) =−D3 +DI1D2 −DI2D+DI3I = 0,

which means that all powers Dn for n ≥ 3 can be expressed using I,D,D2 and the invariants. It can
therefore be written

TD (D) =α0I+α1D+α2D2 (3.24)

for certain α0,α1,α2 , which are functions of DI1, DI2, DI3. This is the general constitutive relation for
the so-called Reiner-Rivlin fluids [Haz13, Chapter 7].

If, however, we consider a strictly linear dependence on D, we get a constitutive relation for New-
tonian liquids. In that case, apparently α2 = 0, α1 = const. and α0 can only be in the form

α0 =µ′
DI1 =µ′TrD =µ′di i =µ′∇·V ,

because the invariants DI2, DI3 have quadratic and cubic dependence on D, respectively - see Section
1.2.10. We substitute into (3.24) and using the convention α1 = 2µ,we get

TD (D) =µ′ (∇·V )I+2µD,

T (D) =
(−P +µ′∇·V

)
I+2µD. (3.25)

The coefficient µ, which generally depends on temperature T and density ϱ, is called the dynamic
viscosity coefficient and µ′ is called the second (dilation) viscosity coefficient .

Remark. Relationship for TD can also be derived from the assumption of its isotropic linear depen-
dence on the velocity tensor deformation D in the form

τi j =αi j kℓdkℓ+βi j ,

where A = (
αi j kℓ

)
, B = (

βi j
)

are isotropic tensors (see section 1.2.11).

By writing it down TD = (
τ̃i j

)
, we get component-wise

τ̃i j =µ′δi j∇·V +µ
(
∂Vi

∂x j
+ ∂V j

∂xi

)
=µ′δi j∂kVk +µ

(
∂ j Vi +∂i V j

)
, (3.26)

, or, respectively, in the expanded form

τ̃i i =µ′∂kVk +2µ∂i Vi , (3.27)

τ̃i j = τ̃ j i =µ
(
∂ j Vi +∂i V j

)
, i ̸= j . (3.28)

The given relations can be interpreted as an effect of the viscosity of the fluid, where fluid layers
moving at different velocities “rub” against each other and exert a force on each other, which is pro-
portional to their mutual velocity.

If we substitute the relations (3.27)–(3.28) into the equations (3.20), we get the so-called Navier-
Stokes equations2 in non-conservative (differential) form, which describe the compressible flow of a
viscous Newtonian fluid

2In a broader sense, we mean the entire system of equations by the Navier-Stokes equations describing the flow, i.e.
equation (3.30)–(3.32) together with the continuity equation and the energy equation (see Sect 3.9).
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ϱ
DVi

Dt
=−∂i P +∂ j

(
µ′δi j∂kVk +µ

(
∂ j Vi +∂i V j

))+ϱFi , i ∈ {1,2,3} , (3.29)

or, respectively, in the expanded form

ϱ
DV1

Dt
=− ∂P

∂x1
+ ∂

∂x1

(
µ′∇·V +2µ

∂V1

∂x1

)
+ ∂

∂x2

[
µ

(
∂V1

∂x2
+ ∂V2

∂x1

)]
+ ∂

∂x3

[
µ

(
∂V1

∂x3
+ ∂V3

∂x1

)]
+ϱF1

(3.30)

ϱ
DV2

Dt
=− ∂P

∂x2
+ ∂

∂x1

[
µ

(
∂V2

∂x1
+ ∂V1

∂x2

)]
+ ∂

∂x2

(
µ′∇·V +2µ

∂V2

∂x2

)
+ ∂

∂x3

[
µ

(
∂V2

∂x3
+ ∂V3

∂x2

)]
+ϱF2,

(3.31)

ϱ
DV3

Dt
=− ∂P

∂x3
+ ∂

∂x1

[
µ

(
∂V3

∂x1
+ ∂V1

∂x3

)]
+ ∂

∂x2

[
µ

(
∂V3

∂x2
+ ∂V2

∂x3

)]
+ ∂

∂x3

(
µ′∇·V +2µ

∂V3

∂x3

)
+ϱF3.

(3.32)

3.5.3 Stokes hypothesis

The so-called mechanical pressure is often [Bur15] defined as

Pmech =−1

3
TrT =−1

3
τi i , (3.33)

i.e. as the average of the forces acting on three unit surfaces oriented perpendicularly to the axes
of the coordinate system. The choice of the coordinate system does not matter because (3.33) is an
invariant of T (see Section 1.2.10). For simple fluids defined by the relation (3.18), and therefore also
for Newtonian fluids, it holds at rest that Pmech = P. But how about when the fluid is moving?

The strain rate tensor D can be written as the sum of its isotropic (volumetric) part

Diso = 1

3
(TrD)I = 1

3
(∇·V )I

and the remaining, so-called deviatoric parts with zero trace

Ddev = D−Diso =
(

1

2

((
∂i V j +∂ j Vi

)− 2

3
δi j∂kVk

))
.

Substituting into the stress tensor in the form (3.25), we have

T = (−P +µ′∇·V
)

I+2µ (Diso +Ddev) =

−P +

µ′+ 2

3
µ︸ ︷︷ ︸

:=κ

∇·V

I+2µDdev

= (−P +κ∇·V )I+2µDdev,

where κ=µ′+ 2
3µ is called the bulk viscosity coefficient (or volumetric viscosity) and the dynamic vis-

cosity µ is also called shear viscosity in this context. According to (3.33),

Pmech = P −κ∇·V

then holds. The usual assumption is that the hydrostatic and mechanical pressures are equal even
during movement, which expresses the so-called Stokes hypothesis by relation

κ= 0 or µ′ =−2

3
µ. (3.34)
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In [Gad95] and more recently in [Bur15], it is discussed that for certain fluids (monatomic sufficiently
dilute gases), this relationship can also be justified by the kinetic theory of gases, but it does not
apply in general. There are experimental methods [Gad95] by which one can measure κ, and in very
common materials (gases such as oxygen, nitrogen), κ is apparently of the same order as µ. In CO2,
κ is even (roughly) a thousand times greater than µ. The reason why Stokes hypothesis can still be
used and achieve realistic results of flow simulations is rather that (not only) for these materials, it
normally holds that

|κ∇·V |≪ P.

Exceptions are extreme situations such as supersonic flow during entry of a cosmic module into a
planetary atmosphere with high CO2 concentration. In many cases, on the other hand, the Stokes
hypothesis is not needed at all, as we will learn further in Section 3.7.

3.6 Inviscid flow - Euler’s equations

In some cases, the viscosity of the fluid can be neglected. Then we speak of the so-called inviscid
(ideal) liquid. By putting µ = µ′ = 0 in (3.30)–(3.32) or, respectively, τ̃i j = 0 in (3.20), we get the so-
called Euler’s equations in non-conservative (differential) form

ϱ
DVi

Dt
=−∂i P +ϱFi . (3.35)

Their vector form

ρ
DV

Dt
=−∇P +ϱF ,

can be obtained by substituting TD = 0 into (3.17).

3.7 Incompressible flow

In incompressible flow, the volumetric measure in any control volume of fluid V0 ⊂ V0 does not
change over time, i.e., (as in v 2.21) we have

m3 (V0) =
∫
V0

dX
!=

∫
V (t )

dx =
∫
V0

∣∣∣∣det
∂x

∂X

∣∣∣∣dX =
∫
V0

|detF|dX , (3.36)

from which ∫
V0

(1−|detF|)dX = 0

and given an arbitrary choice of V0, it follows that

|detF| = 1. (3.37)

Now by differentiating (3.37) w.r.t. time and using (2.26), we get

∇·V = ∂ j V j = 0, (3.38)
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Under this assumption, the continuity equation (2.19) emerges in the form of the so-called transport
equation

0 = ∂ϱ

∂t
+∇· (ϱV

)= ∂ϱ

∂t
+V ·∇ϱ+ϱ∇·V︸ ︷︷ ︸

=0

= ∂ϱ

∂t
+V ·∇ϱ= Dϱ

Dt
= ∂ρ

∂t
. (3.39)

The density ρ expressed in material coordinates is therefore independent of time. From this it can be
seen that the condition of incompressibility is satisfied by the flow if any initial density distribution
just drifts along with the flow. If the fluid is initially homogeneous, i.e. ρ = const., then ϱ = const.
must apply at any time t and for each x ∈V (t ).

3.8 Equations of incompressible fluid flow

For simplicity, let us now assume
ϱ= const.

Then directly from the continuity equation (2.19), we get the incompressibility condition (3.38). Let
us also assume that the kinematic viscosity (and therefore the dynamic viscosity µ) is also constant.
By direct substitution of (3.38) into (3.30), we obtain

ϱ
DVi

Dt
=−∂i P +µ∂ j

((
∂ j Vi +∂i V j

))+ϱFi

=−∂i P +µ

∂ j j Vi +∂i j V j︸ ︷︷ ︸
=0

+ϱFi i ∈ {1,2,3} ,

=−∂i P +µ∂ j j Vi . (3.40)

The marked term is equal to zero because it is a derivative of the continuity equation ∂kVk = 0 w.r.t.
xi (assuming interchangeability of derivatives). In vector form, we have

ϱ
DV

Dt
=−∇P +µ∆V +ϱF . (3.41)

After dividing by the density ϱ, we get the frequently used form

DV

Dt
=−∇P̃ +ν∆V +F , (3.42)

where
ν= µ

ϱ
(3.43)

is called kinematic viscosity and

P̃ = P

ϱ
(3.44)

is the kinematic (standardized) pressure.
Under the given assumptions, the system of equations (3.38), (3.42) supplemented by the state

equation of the fluid (see section 3.10) is closed and solvable without using the law of conservation
of energy, which we derive in the following section. The same is true for inviscid flow at constant
temperature.
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3.9 Conservation of energy

3.9.1 Conservation of total energy

We will now consider the law of conservation of total energy for simple liquids. As in part 3.1, let
V0 be a fixed control volume of the material body V0 whose shape transforms over time to V (t ). Let
us denote by E (t , x) the specific internal energy (per unit mass). Total (kinetic and internal) energy of
the substance contained in the volume V (t ) is then

E (t ) =
∫

V (t )

ϱ

(
E + 1

2
V 2

)
dx , (3.45)

where we denoted V 2 :=V ·V =Vi Vi = ∥V ∥2. The change of this value per unit time is the sum of:

1. Power of surface forces (pressure and viscous forces) at the boundary of the volume ∂V , i.e.∫
∂V (t )

V · (Tn)dS =
∫
∂V

Vi (Tn)i dS =
∫
∂V

Viτi j n j dS =
∫

V (t )

∂ j
(
Viτi j

)
dx . (3.46)

2. Power of volume forces on the substance in the entire volume V∫
V (t )

F · (ϱV dx
)= ∫

V (t )

ϱFi Vi dx . (3.47)

3. Flux of internal energy across the boundary ∂V due to the diffusion (conduction) of heat through
the material. Heat flux into the volume V across the surface dS with outer normal n due to heat
conduction is given by Fourier’s law

λ
∂T

∂n
dS =λ∇T ·ndS (3.48)

where λ
[
W ·m−1 ·K−1

]
is the thermal conductivity coefficient. Therefore, the total heat flux

across the boundary ∂V caused by heat conduction is∫
∂V (t )

λ∇T ·ndS =
∫

∂V (t )

λ∂i T ni dS =
∫

V (t )

∂i (λ∂i T )dS =
∫

V (t )

∇· (λ∇T )dx. (3.49)

4. Power of volumetric heat sources in the volume V . If the heating power of volumetric heat
sources per unit mass is equal to Q̇, the total heating power in the volume V (t ) is∫

V (t )

ϱQ̇dx . (3.50)

By summing up all the contributions (3.46)–(3.50), we get the total energy balance

dE

dt
= d

dt

∫
V (t )

ϱ

(
E + 1

2
V 2

)
dx =

∫
V (t )

∂ j
(
Viτi j

)+ϱFi Vi +∂i (λ∂i T )+ϱQ̇dx .

Using the Reynolds transport theorem for specific quantities (2.31) with the choice Φ= E + 1
2 V 2 and

considering that the choice V0 was arbitrary, we get the equality of integrands in the form

ϱ
D

Dt

(
E + 1

2
V 2

)
= ∂ j

(
Viτi j

)+ϱFi Vi +∂i (λ∂i T )+ϱQ̇, (3.51)

or the law of conservation of total energy in the (non-conservative) differential form. The conservative
form (obtained using (2.30)) is not mention, as it is not so compact.
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3.9.2 Conservation of internal energy

It is clear that kinetic energy, like momentum, is not an objective quantity (see section 3.5.1).
Equation (3.51) can be simplified, however. We start from the general momentum balance equations

ϱ
DVi

Dt
= ∂ jτi j +ϱFi , i ∈ {1,2,3} , (3.16)

which we multiply by Vi and we sum over i , which gives

ϱ
DVi

Dt
Vi︸ ︷︷ ︸

D
Dt

1
2 V 2

=Vi∂ jτi j +ϱFi Vi . (3.52)

By subtracting (3.52) from (3.51), we obtain

ϱ
DE

Dt
= τi j∂ j Vi +∂i (λ∂i T )+ϱQ̇, (3.53)

or, respectively, in vector form

ϱ
DE

Dt
= T ·∇V +∇· (λ∇T )+ϱQ̇, (3.54)

which is the law of conservation of internal energy in non-conservative (differential) form.

3.9.3 Conservation of internal energy for simple fluids

By substituting the relation (3.18) into (3.53), we get the internal energy balance equation for sim-
ple fluids

ϱ
DE

Dt
= (−Pδi j + τ̃i j

)
∂ j Vi +∂i (λ∂i T )+ϱQ̇,

=−P∂i Vi + τ̃i j∂ j Vi +∂i (λ∂i T )+ϱQ̇,

or, in vector form,

ϱ
DE

Dt
=−P∇·V +TD ·∇V +∇· (λ∇T )+ϱQ̇.

3.9.4 Conservation of internal energy for inviscid flow

In the case of inviscid flow described by Euler’s equations (see part 3.6), heat conduction is also
usually neglected, i.e. we put µ= 0 and λ= 0. The law of conservation of internal energy then has the
form

ϱ
DE

Dt
=−P∇·V +ϱQ̇. (3.55)

3.10 Closure of the system of equations for fluid flow

So far, we have derived several equations that express the processes during fluid flow following
from the conservation laws of fundamental physical quantities. It is 1 equation for the mass conser-
vation law (Section 2.9), 3 equations for the conservation of linear momentum components (part 3.3)
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and 1 equation for the conservation of energy (Sect 3.9). Hence, we have a total of 5 equations for the
density ϱ, 3 momentum components ϱVi , internal energy E , absolute temperature T and pressure
P 3. There are 7 unknown quantities and it is obvious that 2 more equations will be needed for the
system to be well-posed. These equations are

1. the relationship between internal energy and absolute temperature,

2. equation of state of the fluid.

These relationships will be explored in more detail in Sections 6.1 and 6.2.

3.11 Potential flow equation

We assume a stationary non-eddy inviscid and isentropic flow. Stationary means that the partial
derivatives of all quantities with respect to time are equal to zero. Non-eddy in 3D means

curl V = 0, (3.56)

which is equivalent to the existence of a flow potential, i.e. a functionΦ such that

V =∇Φ.

Condition (3.56) corresponds to the exactness (and therefore integrability) of the differential form
Vi dxi . In the two-dimensional domain, the corresponding condition is the exactness of the differen-
tial form

V1dx1 +V2dx2,

i.e.,
∂2V1 −∂1V2 = 0

must hold.
The system of Euler’s equations in conservative form for stationary flow can be written as

∂1
(
ϱV1

)+∂2
(
ϱV2

) = 0,

∂1
(
ϱV 2

1 +P
)+∂2

(
ϱV1V2

) = 0,

∂1
(
ϱV1V2

)+∂2
(
ϱV 2

2 +P
) = 0.

From Euler’s equations in non-conservative form, it can be derived that

−1

2
ρd

(
V 2

1 +V 2
2

)= dp

and because for the local speed of sound, we have

a2 = dp

dρ
,

we obtain

dρ =−dp

a2 =− ρ

2a2 d
(
V 2

1 +V 2
2

)
from which ∂1ρ,∂2ρ can be calculated. After substituting into the continuity equation and expressing
V1 = ∂1Φ, V2 = ∂2Φ , we get the full potential equation (without explicit occurrence of ρ) in the form

∂11Φ

(
1− 1

a2 (∂1Φ)2
)
+∂22Φ

(
1− 1

a2 (∂2Φ)2
)
− 2

a2 ∂1Φ∂2Φ∂12Φ= 0.

3The symbolism corresponds to the Eulerian approach and the corresponding conservative form equations. We will
follow this marking throughout the section (3.10).



CHAPTER

4
Mathematical analysis of flow
equations

In this chapter, we will briefly get acquainted with some principles and mathematical tools that
are used in the mathematical analysis of flow problems. The aim of this analysis is to show whether,
under what conditions and in what form there is a solution to flow problems, and if so, if it is unique.

4.1 Formulation of the incompressible flow problem

Let Ω⊂ R3 be a domain with a Lipschitz boundary (see Definition 29) a J = (0, tmax) be the time
interval. The problem we will investigate is that of incompressible flow, in the form

∇·V = 0, (3.38)

DV

Dt
=−∇P̃ +ν∆V +F , (3.42)

for the unknowns V and P̃ , where ν = µ
ϱ is called kinematic viscosity and P̃ = P

ϱ is the kinematic
pressure (see sections 3.7 and 3.8), with a boundary condition

V (t , x)|∂Ω =W (t , x) . (4.1)

By integrating (3.38) over Ω and using the Gauss theorem (Corollary 7), we find that the function W
has to satisfy ∫

∂Ω

W ·ndS = 0.

The initial condition is given by
V (0, x) =V 0 (x) , x ∈Ω, (4.2)

satisfying the divergence-free condition

∇·V 0 (x) = 0, x ∈Ω. (4.3)

4.2 Pressure Poisson Equation

If we apply the divergence operator to (3.42), we get

∇· DV

Dt
=−∇·∇P̃ +ν∇·∆V +∇·F . (4.4)

67
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Let’s denoteΦ=∇·V . On the left hand side of (4.4), we get from the definition of the material deriva-
tive (2.8)

∇· DV

Dt
=∇·

(
∂V

∂t
+V ·∇V

)
= ∂Φ

∂t
+∇· (V ·∇V ) .

On the right hand side of (4.4), one can rewrite

ν∇·∆V = ν∂i∂kkVi = ν∂kki Vi = ν∂i kkVi = ν∂kk∂i Vi = ν∆Φ.

(4.4) can therefore be written as

∆P̃ +∇· (V ·∇V )−∇·F = ν∆Φ− ∂Φ

∂t
. (4.5)

From the incompressibility condition (3.38), i.e Φ = 0, we obtain the so-called (simplified) Pressure
Poisson Equation or PPE

∆P̃ =−∇V ·∇V +∇·F . (4.6)

The incompressibility condition therefore induces a pressure field that is up to a constant uniquely
determined by the current value of the velocity field V and its changes propagate at infinite speed
throughout the domain based on the changes of V . If, on the other hand, we assume the validity of
(4.6), we get, according to (4.5), a heat equation for the quantity Φ in the form

∂Φ

∂t
= ν∆Φ. (4.7)

If we consider the boundary condition
Φ|∂Ω = 0 (4.8)

or
∂Φ

∂n

∣∣∣∣
∂Ω

= 0, (4.9)

then together with the initial condition (4.3) equation (4.7) implies Φ ≡ 0 independently of t and x .
P̃ therefore appears in the equation (3.42) as the Lagrange multiplier ensuring the condition (3.38).
Equation (4.7) together with the boundary condition (4.8) ensures that the initial value of ∇·V diffuses
over time to zero, although the initial condition (4.2) does not meet (4.3), i.e. ∇·V 0 does not generally
hold in Ω . In numerical algorithms (see also section ??) based on this form of PPE, the divergence
of velocity relaxes to zero, which in practice makes it possible to get rid of a hard-to-fulfill condition
(4.3).

Alternatively to (4.6), it is possible to only use ∂Φ
∂t = 0 as a consequence of incompressibility, plug

this into (4.5) and obtain a seemingly equivalent, so-called consistent pressure Poisson equation in
the form

∆P̃ =−∇V ·∇V +ν∇·∆V +∇·F . (4.10)

Solution (4.10) implies in turn
∂Φ

∂t
= 0,

which means that the divergence value V does not change over time. With the initial condition (4.3)
the equivalence with the incompressibility condition (3.38) is guaranteed.

Equations (4.6) and (4.10) also require boundary conditions for their solution, which the original
problem does not include. A suitable boundary condition can be obtained by extending the validity
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of (3.42) to the boundary ∂Ω . Since this is a vector equation, there seems to be a choice. If we project
(3.42) to the direction of the external normal n to ∂Ω, we get the Neumann boundary condition

∂P̃

∂n
= n ·∇P̃ =−DVn

Dt
+ν∆Vn +Fn , (4.11)

where Vn ,Fn are the normal components of the vectors V ,F . In the article [GS87], the authors show
that, assuming sufficient regularity of both the solution and the boundary, taking the projection into
the tangential direction yields an equivalent boundary condition. Furthermore, when using (4.11),
the equations (4.6) and (4.10) are equivalent.

4.3 Weak solution of the incompressible flow problem

Now consider the problem (3.42), (3.38), (4.2) with a boundary condition

V |∂Ω = 0 (4.12)

for simplicity. Condition (4.12) is commonly referred to as the no-slip condition for viscous liquids
on the walls - see section 7.1. For the more general case (e.g. domain with inflow and outflow), the
problem can be reformulated using a vector field Ṽ W fulfilling ∇·Ṽ W = 0, Ṽ W

∣∣
∂Ω =W . Then just look

for a solution to the problem in the form Ṽ =V − Ṽ W , which satisfies (3.42) and (4.12).
The following interpretation is inspired by the original course [Neu06a]. For a more detailed study,

one can also use well-prepared materials for the course on the Navier-Stokes theory at the Charles
University [Pok20a].

4.3.1 Weak equality

Consider again the Navier–Stokes equations (3.42) and let’s expand the material derivative, i.e.

∂V

∂t
+V ·∇V =−∇P̃ +ν∆V +F .

From Helmholtz’s theorem 2.4 it follows that for a (sufficiently smooth) vector field F , there is poten-
tial Φ such that

F =∇Φ+Fσ, (4.13)

where ∇·Fσ = 0. If we substitute this into (4.14), we will get

∂V

∂t
+V ·∇V︸ ︷︷ ︸

(1)

=−∇(
P̃ −Φ)︸ ︷︷ ︸
(2)

+ν∆V︸ ︷︷ ︸
(3)

+Fσ. (4.14)

We multiply the equation (4.14) by a sufficiently smooth scalar function ϕ : Ω → R3, which has a
compact support in Ω and satisfies ∇ ·ϕ = 0 in Ω. We integrate over Ω and for the individual terms
from left to right. we obtain

(1)
∫
Ω

(V ·∇V ) ·ϕdx =
∫
Ω

V j
(
∂ j Vi

)
ϕi dx =

∫
∂Ω

V j Vi ϕi︸︷︷︸
=0

dx −
∫
Ω

∂ j
(
V jϕi

)
Vi dx

−
∫
Ω

(
∂ j V j

)︸ ︷︷ ︸
=0

ϕi V j dx −
∫
Ω

Vi∂ jϕi V j dx =−
∫
Ω

V ·∇ϕ ·V dx, (4.15)

(2) −
∫
Ω

∇(
P̃ −Φ) ·ϕdx =−

∫
Ω

(
∂i

(
P̃ −Φ))

ϕi dx =−
∫
∂Ω

(
P̃ −Φ)

ϕi︸︷︷︸
=0

dx −
∫
Ω

(
P̃ −Φ)(

∂iϕi
)︸ ︷︷ ︸

=0

dx = 0,

(3)
∫
Ω

∆V ·ϕdx =
∫
Ω

(
∂ j j Vi

)
ϕi dx =

∫
∂Ω

(
∂ j Vi

)
ϕi︸︷︷︸
=0

n j dx −
∫
Ω

(
∂ j Vi

)(
∂ jϕi

)
dx =−

∫
Ω

∇V ·∇ϕdx .



70 CHAPTER 4. MATHEMATICAL ANALYSIS OF FLOW EQUATIONS

After performing these operations, we arrive at∫
Ω

∂V

∂t
·ϕdx −

∫
Ω

V ·∇ϕ ·V dx +
∫
Ω

ν∇V ·∇ϕdx =
∫
Ω

Fσ ·ϕdx . (4.16)

Next, we multiply (4.16) by a smooth function ϑ : J → R satisfying ϑ (tmax) = 0 and we integrate
over J . In the first term, we get

∫
J

∫
Ω

∂V

∂t
·ϕdxϑdt =

∫
J

 d

dt

∫
Ω

V ·ϕdx

ϑdt = [
per partes

]

=
∫
Ω

V ·ϕdxϑ

tmax

0

−
∫
J

∫
Ω

V ·ϕdxϑ̇dt

=−ϑ (0)
∫
Ω

V0 ·ϕdx −
∫
J

∫
Ω

V ·ϕdxϑ̇dt .

After these steps, we obtain from (4.16) the so-called weak equality

∫
J

∫
Ω

−V ·ϕϑ̇−V ·∇ϕ ·V ϑ+ν∇V ·∇ϕϑ−F ·ϕϑdxdt =ϑ (0)
∫
Ω

V 0 ·ϕdx . (4.17)

Note that:

1. In (4.17), the conditions for the regularity of the function V are significantly weaker than in the
original equation (4.14). It does not have to be differentiable w.r.t. time and must be (together
with its first derivatives) defined almost everywhere.

2. In (4.17), neither the pressure P̃ nor the potential Φ of (4.13) appear. Without loss of generality,
we can therefore assume Φ= 0, i.e. F = Fσ, and so ∇·F = 0.

3. Each sufficiently smooth, so-called classic solution of the problem of incompressible flow (3.42),
(3.38), (4.12), (4.2) satisfies a weak equality for any choice of functionsϕ,ϑwith the above prop-
erties.

The question is whether, on the contrary, it is possible to use the weak equality (4.17) to define a
function that is, in a sense, a solution to the original problem. For example, it follows from the above
procedure that to derive (4.17), the condition of incompressibility (3.38) played an important role,
but it no longer exists in the weak equality itself. What else needs to be assumed about the function
V , so that satisfying the weak equality identifies the function that is related to the original problem?
Can it be guaranteed that such a function even exists? We will try to answer some of these questions
in the following.

4.3.2 Special function spaces

At this moment, it is appropriate to recall the definitions of function spaces from Section 1.7.4. In
addition, let’s introduce the following spaces:
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L2 (Ω)3 Hilbert space of vector functions u :Ω→ R3 , whose components1 are in L2 (Ω), with
an inner product

(u, v )L2(Ω)3 =
∫
Ω

u ·vdx =
3∑

i=1

∫
Ω

ui (x) vi (x)dx =
3∑

i=1
(ui , vi )L2(Ω)

and the induced norm

∥u∥L2(Ω)3 =
√√√√∫
Ω

∥u (x)∥2 dx =
√√√√∫
Ω

3∑
i=1

u2
i (x)dx =

√√√√ 3∑
i=1

∫
Ω

u2
i (x)dx

=
∥∥(∥ui∥L2(Ω)

)∥∥=

√√√√ 3∑
i=1

∥ui∥2
L2(Ω). (4.18)

H1
0 (Ω)3 Hilbert space of vector functions u :Ω→ R3 , whose components are in H1

0 (Ω), with
an inner product

(u, v )H1
0(Ω)3 ≡ ((u, v )) =

∫
Ω

∇u ·∇vdx =
∫
Ω

∂ j ui∂ j vi dx (4.19)

and the induced norm

∥u∥H1
0(Ω)3 =

√
((u,u)) =

√√√√∫
Ω

∇u ·∇udx =
√√√√ 3∑

i=1

∫
Ω

3∑
j=1

(
∂ j ui

)2 dx

=
∥∥∥(
∥ui∥′H1

0(Ω)

)∥∥∥=

√√√√ 3∑
i=1

∥ui∥′2H1
0(Ω)

. (4.20)

Remark 75. The expression (4.19) is evidently a symmetric bilinear form. Thanks to
the modifications (4.20), we see that

((u,u)) =
3∑

i=1
∥ui∥′2H1

0(Ω)
,

where on the right hand side, there is a norm denoted by a prime introduced as a re-
sult of Corollary 1.7.9. That’s why ((·, ·)) is also positive definite and is therefore indeed
an inner product. According to Remark 57, there further exists k > 0 such that

∥u∥L2(Ω)3 ≤ k ∥u∥H1
0(Ω)3 . (4.21)

L2,div (Ω)3 space of vector-valued functions u with components in L2 (Ω), for which in addition
∇·u ∈ L2 (Ω). The norm in this space is

∥u∥L2,div(Ω)3 = ∥u∥L2(Ω)3 +∥∇·u∥L2(Ω) .

1This definition assigns properties to the components of vector functions - i.e. elements of space L2 (Ω)3 are triples of
functions z L2 (Ω), which, if they are calculated at a point (which is generally only possible almost everywhere), together
creates a column vector of function values that lies in R3. Alternatively, one can define L2 (Ω)3 as the tensor product of
vector spaces

L2 (Ω)3 = L2 (Ω)⊗L2 (Ω)⊗L2 (Ω) ,

whose elements are formal vectors of elements of L2 (Ω), i.e. evaluation at a point is not discussed at all. This view will be
used in the proof of the statement 78, although a direct definition of the tensor product of vector spaces is avoided



72 CHAPTER 4. MATHEMATICAL ANALYSIS OF FLOW EQUATIONS

Theorem 76. (on traces II) There is continuous map T : L2,div (Ω)3 → L2 (∂Ω) such that

for each f ∈ C1
(
Ω̄

)3
,

T f = f ·n
∣∣
∂Ω

holds.

Remark. Functions from L2 (Ω)3 cannot generally be (continuously) extended onto
the boundary of Ω , but functions from L2,div (Ω)3 can be continuously extended to
∂Ω by taking their normal component.

C∞
0,σ (Ω)3 space of vector-valued functions u with components from C∞

0 (Ω), satisfying in addi-
tion ∇·u = 0 (σ . . . solenoidal function).

H = L2,σ (Ω)3 closure of the space C∞
0,σ (Ω)3 in L2 (Ω)3, with the inner product (u, v )H = (u, v )L2(Ω)3

and norm ∥·∥H = ∥·∥L2(Ω)3

∣∣
H

.

Remark. The closure of C∞
0 (Ω)3 (without „σ“) in L2 (Ω)3 is the whole L2 (Ω)3, i.e.

C∞
0 (Ω)3 is dense in L2 (Ω)3. Space H can also be thought of as a space of functions

from L2 (Ω)3, whose divergence in terms of distributions (see section 1.7.5) is zero and
their normal component at the boundary ∂Ω is (according to Theorem 76) zero.

V closure of the space C∞
0,σ (Ω)3 in H1

0 (Ω)3, i.e. Hilbert space with inner product (·, ·)V =
((·, ·))|V×V and with the norm ∥·∥V = ∥·∥H1

0(Ω)3

∣∣∣
V

.

Remark. The space V can also be thought of as a space of functions from H1
0 (Ω)3,

whose divergence is equal to zero almost everywhere in Ω. (In particular, unlike H,
the functions from V have derivatives almost everywhere.)

Lemma 77. V ⊂ H holds.

Proof. According to Remark 75, boundedness of a function u in the norm of the space H1
0 (Ω)3 also

implies boundedness in the norm of L2 (Ω)3, from which it follows that

H1
0 (Ω)3 ⊂ L2 (Ω)3 . (4.22)

Alternatively, to prove the inclusion (4.22) the first part of the proof of the next statement 78 (where
even something more is proven) can be used. Now consider an arbitrary element u ∈ V. By definition
of V as the closure of C∞

0,σ (Ω)3 in H1
0 (Ω)3, it can be expressed as a limit element of a sequence of

functions (un) ⊂ C∞
0,σ (Ω)3 in the norm of the space H1

0 (Ω)3, i.e.

lim
n→∞∥un −u∥H1

0(Ω)3 = 0

holds. Thanks again to Remark 75, however,

lim
n→∞∥un −u∥L2(Ω)3 = 0

also holds, which means that u is the limit element of the same sequence of functions (un) ⊂ C∞
0,σ (Ω)3,

even in the norm of the space L2 (Ω)3. In other words, it lies in the closure of C∞
0,σ (Ω)3 in L2 (Ω)3, which

is H. Thereby, the proof is concluded.

Proposition 78. V ,→,→ H holds.
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Proof. According to the consequence of the Rellich-Kondrachov theorem 1.7.10, it holds that

H1 (Ω) ,→,→ L2 (Ω) .

If B1 ,→,→B2 and X ⋐B1 is a subspace of B1 (with the same norm!), then apparently also X ,→,→
B2 , which follows immediately from the definitions of compact embedding (Def. 68) and compact
operator. Thanks to that, we specifically have

H1
0 (Ω) ,→,→ L2 (Ω) . (4.23)

We first show that
H1

0 (Ω)3 ,→,→ L2 (Ω)3 . (4.24)

Space H1
0 (Ω)3 is a Hilbert space, and thus is (note 20) reflexive. The identical operator

ι : H1
0 (Ω)3 → L2 (Ω)3 (4.25)

is therefore compact (Definition 65) if and only if (Remark 66) it is completely continuous (Definition
60). Therefore, it suffices to show from the definition that ι is completely continuous. So let (un) be a
weakly convergent sequence of elements of H1

0 (Ω)3, i.e.

lim
n→∞w

(
un)= w (u) , ∀w ∈ H1

0 (Ω)3′ . (4.26)

From the definition of the addition operation by components and linearity of w , one can write 2

w
(
un)= w

un
1

0
0

+w

 0
un

2
0

+w

 0
0

un
3

=
3∑

i=1
w i

(
un

i

)
where w i ∈ H1

0 (Ω)′ are three generally different functionals on H1
0 (Ω)′ . If we choose w i arbitrarily

and w j = 0 for j ̸= i , we get thanks to (4.26)

lim
n→∞w i

(
un

i

)= lim
n→∞w

(
un) (4.26)= w

(
un)= w i (ui ) , ∀w i ∈ H1

0 (Ω)′ ∀i ∈ {1,2,3} .

This means that even individual components un
i weakly converge to ui in H1

0 (Ω), and therefore thanks
to (4.23), they converge strongly in L2 (Ω). But then, from the definition of the norm on L2 (Ω)3 by
components using (4.18), it follows that the sequence of entire vectors un also converges in L2 (Ω)3.
This proves the complete continuity (and thus compactness) of the operator (4.25), that is, the com-
pact embedding (4.24). Ultimately, because V ⋐ H1

0 (Ω)3, we have V ,→,→ L2 (Ω)3, but because V ⊂ H
by Lemma 77, V ,→,→ H holds.

4.3.3 Energy inequality and the definition of a weak solution

We will perform the so-called a priori estimate of the solution to the problem (3.42), (3.38), (4.12),
(4.2). We assume that it exists and by modifying (4.14), we arrive at an inequality that this solution
must satisfy. This inequality will represent its boundedness in terms norms of certain function spaces.
Thanks to this, we will find out to which function spaces the solution must belong.

We start from the relationship (4.16) and we substituteϕ=V , which gives∫
Ω

∂V

∂t
·V dx

︸ ︷︷ ︸
(1)

−
∫
Ω

V ·∇V ·V dx

︸ ︷︷ ︸
(2)

+
∫
Ω

ν∇V ·∇V dx =
∫
Ω

F ·V dx . (4.27)

2Formally, it can be simplified to un = un
i ei , but the components of the vector are functions and the multiplication

operation only meanins un (x) = un
i (x)ei almost everywhere onΩ.
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It holds at the same time

(1) =
∫
Ω

∂V

∂t
·V dx =

∫
Ω

1

2

∂V 2

∂t
dx = d

dt

∫
Ω

1

2
V 2dx

If we recall the derived relation (4.15), i.e.∫
Ω

V ·∇V ·ϕdx =−
∫
Ω

V ·∇ϕ ·V dx ,

then by substitutionϕ=V (at this point we need from V the same properties as fromϕ, i.e. especially
(4.12)!), we receive immediately

(2) =
∫
Ω

V ·∇V ·V dx = 0.

By substituting back using the definitions of the spaces in Section 4.3.2 (and especially (4.20)), we
obtain

d

dt

∫
Ω

1

2
V 2dx +ν∥V ∥2

V =
∫
Ω

F ·V dx .

Using Schwarz, Poincaré (Remark 57 considered with a proportionality constant k) and (generalized)
Young’s inequalities, the right-hand side can be estimated as∫

Ω

F ·V dx = (F ,V )L2(Ω)3 ≤ ∥F∥L2(Ω)3 ∥V ∥L2(Ω)3

≤ k ∥F∥H ∥V ∥V

≤ ν1

2
∥V ∥2

V +
k

2ν
∥F∥2

H .

This further yields
d

dt

∫
Ω

1

2
V 2dx +ν1

2
∥V ∥2

V ≤ k2

2ν
∥F∥2

H .

By integrating over the time interval (0, t ), we get the so-called energy inequality

∫
Ω

1

2
V 2dx

∣∣∣∣∣∣
t︸ ︷︷ ︸

current kinetic energy

+
t∫

0

ν
1

2
∥V (τ, ·)∥2

V dτ

︸ ︷︷ ︸
dissipation of kin. en.

from t=0 to t

≤
∫
Ω

1

2
V 2dx

∣∣∣∣∣∣
t=0︸ ︷︷ ︸

initial kin. energy

+ k2

2ν

t∫
0

∥F (τ, ·)∥2
H dτ

︸ ︷︷ ︸
≈work of volumetric foces3

from time 0 to t

. (4.28)

If we neglect the second term on the left-hand side of (4.28) and multiply the inequality by 2, we
can proceed to the estimate

∫
Ω

1

2
V 2dx

∣∣∣∣∣∣
t

≤
∫
Ω

1

2
V0

2dx + k2

2ν

∫
J

∥F∥2
H dt ,

3More precisely, the work of volume forces in the entire domain Ω for time t would be equal

t∫
0

∫
Ω

|F (τ, x) ·V (τ, x)|dxdt .
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which can be further rewritten using the definitions of norms on the appropriate spaces as

∥V (t , ·)∥2
H ≤ ∥V 0∥2

H + k2

ν
∥F∥2

L2(J ;H) . (4.29)

This is true for (almost) every t ∈ J . In other words, even the (essential) supremum of the left hand
side, which is the norm in the Bochner space L∞

(
J ;H

)
satisfies the same inequality, i.e.

∥V ∥2
L∞(J ;H) ≤ ∥V 0∥2

H + k2

ν
∥F∥2

L2(J ;H) . (4.30)

On the other hand, if we neglect the first term in the energy inequality (4.28), we get for t = tmax

(and after multiplying by 2
ν )

∥V ∥2
L2(J ;V) =

∫
J

∥V ∥2
V dt ≤ 1

ν
∥V 0∥2

H + k2

ν2
∥F∥2

L2(J ;H) . (4.31)

A priori estimates (4.30) and (4.31) thus suggest that a possible solution to the incompressible flow
problem should lie in the spaces L∞

(
J ;H

)
and L2

(
J ;V

)
, and in addition satisfy the mentioned in-

equalities. Thanks to this, we can proceed to the definition of a weak solution to the incompressible
flow problem:

Definition 79. Let V 0 ∈ H, F ∈ L2
(
J ;H

)
. A function V ∈ L∞

(
J ;H

)∩ L2
(
J ;V

)
satisfying the weak

equality ∫
J

∫
Ω

−V ·ϕϑ̇−V ·∇ϕ ·V ϑ+ν∇V ·∇ϕϑ−F ·ϕϑdxdt =ϑ (0)
∫
Ω

V 0 ·ϕdx (4.17)

for all ϕ ∈ C∞
0,σ (Ω)3 and all ϑ ∈ C∞

0 ([0,Tmax)) is called the weak solution of the incompressible flow
problem (3.42), (3.38), (4.12), (4.2).

Remark. The choice ϑ ∈ C∞
0 ([0,Tmax)) ensures ϑ (tmax) = 0, but does not force ϑ (0) = 0 (ϑ must have

compact support in a semi-closed interval).

Remark. The freedom of choice of the test functions is analogous to the freedom in selecting the
volume V0 in the integral form of the conservation laws. In both these cases, lower regularity of the
solutions is required compared to classical solutions ofthe equations in differential form.

Remark. When describing real flow situations, discontinuities may actually exist in physical quanti-
ties. In transonic flow (which is always compressible, however!), the interface between subsonic and
supersonic flow is formed by a surface (so-called shock wave), where pressure, density and tempera-
ture are discontinuous. From a physical point of view, the weak solution is therefore more appropriate
for describing real situations compared to the classical solution of the original problem (3.42), (3.38),
(4.12), (4.2). On the other hand, in our particular setting of incompressible flow, the manner in which
functions from Sobolev spaces can be discontinuous is strictly controlled by Theorems 45 and 46.

4.4 Existence (and uniqueness) of a weak solution

We find the weak solution as the limit of the sequence of its approximations using the Galerkin
method. This method relies on the existence of a countable orthonormal basis of the underlying
space, i.e. a complete orthonormal system of functions. We can find these functions as the eigen-
functions of the so-called Stokes operator.
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4.4.1 Functional-analytic intermezzo: the Stokes operator

We define the Stokes operator A : V → V′ using a relationship

(Au) (v ) = ((u, v )), (4.32)

where ((·, ·)) is the inner product on V defined by the relation (4.19). Then

1. A is (apparently) linear:

(A (αu1 +u2)) (v ) = ((αu1 +u2, v )) =α((u1, v ))+ ((u2, v )) =α (Au1) (v )+ (Au2) (v ) .

2. A is continuous (bounded) on V:

∥Au∥V′ = sup
v∈V

∥v∥V=1

|(Au) (v )| = sup
v∈V

∥v∥V=1

|((u, v ))|

=︸︷︷︸
Schwarz

((u,
u

∥u∥V
)) = 1

∥u∥V
∥u∥2

V = ∥u∥V .

3. A is a bijection A : V → V′, i.e. A is invertible.

According to Riesz’s theorem 1.7.2, for each w ∈ V
′
, there exists one and only one element u ∈ V

such that

w (v ) = ((u, v )) = (Au) (v ) ,

i.e. exactly one solution to the equation

Au = w .

Remark. If we had introduced the inner product on V using

(u, v )V =
∫
Ω

u ·v +∇u ·∇vdx ,

which corresponds to the norm (1.36) on H1
0 (Ω) (the one “without prime”), we would use The Lax-

Milgram Lemma 19 here instead of Riesz’s theorem 1.7.2. From Poincaré’s inequality 1.7.9, however,
the norm induced by this scalar product and the norm induced by ((u, v )) are equivalent and therefore
dual spaces are the same when using both norms (a functional is continuous in one norm just as it is
in the other). That’s why we can take ((u, v )) as the „primary“ inner product on V and all procedures
will be simplified.

Remark. As V ⊂ H, then obviously H′ ⊂ V′ (continuity of functionals is assumed in the norm H, i.e.
L2 (Ω)3).

Theorem 80. Let w ∈ H′. Then the solution of the equation

Au = w ,

satisfies

u ∈ H2 (Ω)3 ∩H1
0 (Ω)3 ∩L2,σ (Ω)3 = H2 (Ω)3 ∩H1

0 (Ω)3 ∩V.
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Let us denote

D Ã = H2 (Ω)3 ∩H1
0 (Ω)3 ∩V (4.33)

and further denote as Ã the operator A restricted to D Ã .
In Hilbert space H, the isomorphism H′ ≡ H holds and by Riesz’s theorem (1.7.2), every element

Ãu ∈ H′ for u ∈ D Ã is represented uniquely by an element z ∈ H such that (according to the definition
of the Stokes operator (4.32)

(z , v )H = (
Ãu

)
(v ) = ((u, v )) =

∫
Ω

∇u ·∇vdx .

According to Green’s formula (Theorem 5), this representative is

z =−∆u,

which is, thanks to the form of D Ã (4.33), a function defined almost everywhere in Ω (because u is in
H2 (Ω)).

So let us consider in this sense Ã as an operator

Ã : D Ã → H,

with values

Ãu = z =−∆u.

The latter is (again according to Riesz’s theorem and the derivation above) bounded on D Ã and in
addition, it is symmetric: (

Ãu, v
)= ((u, v )) = ((v ,u)) = (

Ãv ,u
)= (

u, Ãv
)

.

Ã is therefore a self-adjoint and invertible operator. Operator Ã−1 : H → D Ã is thus also self-adjoint
and due to compact embedding D Ã ⊂ V ,→,→ H (see Proposition 78) it is also compct according to
Theorem 71. Further, by Theorem 67, there is a countable orthonormal basis of the space H.

4.4.2 Galerkin method

According to the previous section 4.4.1, there is an orthonormal basis (W n) of the space H , which
satisfies the condition of orthonormality in H, i.e.

(W k ,W ℓ)H = δkℓ. (4.34)

Because W n are at the same time the eigenfunctions of the Stokes operator Ã4, it also holds that
W n ∈ V and in addition,

((W k ,W ℓ)) = (
ÃW k ,W ℓ

)
H = (

µkW k ,W ℓ

)
H =µkδkℓ. (4.35)

Let us now denote

Vn = span(W 1, . . . ,W n) . (4.36)

4W n are eigenfunctions of the operator Ã−1, i.e. Ã−1W n = λnW n ∈ V holds with λn ̸= 0, because Ã−1 is (as well as Ã)
injective. Then of course

ÃW n = Ã

(
1

λn
Ã−1W n

)
= 1

λn
Wn ,

i.e, W n is also an eigenfunction of the operator Ã corresponding to its eigenvalue µn =λ−1
n .
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The Galerkin method consists in the construction of a sequence of approximations of the weak solu-
tion, i.e. function V satisfying the weak equality by definition 79. Let’s look for the n-th approximation
as a function V n : J → Vn in the form

V n (t , X ) =
n∑

k=1
ak (t )W k (x) ,

which satisfies (4.16), i.e.∫
Ω

∂Vn

∂t
·ϕdx −

∫
Ω

V n ·∇ϕ ·V ndx +
∫
Ω

ν∇V n ·∇ϕdx =
∫
Ω

F ·ϕdx , (4.37)

for each ϕ ∈ Vn . From the construction of Vn , this is equivalent with (4.37) being satisfied for each
ϕ ∈ {W 1, . . . ,W n}. After pluggingϕ=W ℓ, we get

n∑
k=1

ȧk (t ) (W k ,W ℓ)H −
n∑

k=1

n∑
j=1

ak (t ) a j (t )
∫
Ω

W k ·∇W ℓ ·W j dx +ν
n∑

k=1
ak (t ) ((W k ,W ℓ)) = (F ,W ℓ)H .

Using orthogonality relations (4.34) and (4.35), we can further write

ȧℓ (t )−
n∑

k=1

n∑
j=1

ak (t ) a j (t )
∫
Ω

W k ·∇W ℓ ·W j dx +νµℓaℓ (t ) = (F ,W ℓ)H . (4.38)

Equation (4.38) for ℓ ∈ {0,1, . . . ,n} forms a system of ordinary differential equations for the un-
known functions a1 (t ) , . . . , an (t ). The initial conditions for this system are obtained as

aℓ (0) =βℓ, kde V 0 =
+∞∑
k=1

βkW k , (4.39)

which means that the n- th approximation satisfies the n-th initial condition

V n (0, ·) =V 0,n :=
n∑

k=1
βkW k .

We show that the problem (4.38), (4.39) has a solution on the entire interval J . Because it is a so-
called autonomous system in the form ȧ = f (a) where a = (aℓ), i.e. without an explicit dependence
of the right-hand side on time, only two distinct cases can occur:

1. the solution exists on the entire interval J , or

2. at time Tb < Tend there is a so-called „blow-up“, i.e.

lim
t→Tb

∥a (t )∥Rn =+∞. (4.40)

We will now rule out this second possibility.
It holds that

∥V n∥2
H =

∫
Ω

V n ·V ndx =
n∑

k=1

n∑
j=1

ak a j
(
W k ,W j

)
H =

n∑
k=1

n∑
j=1

ak a jδk j =
n∑

k=1
a2

k = ∥a∥2
Rn .

Therefore, by estimating the value of ∥V n∥H, it is also possible to estimate the norm of the solution
of the ODE system, i.e. ∥a∥. We make this estimate again in terms of the energy inequality (4.28). By
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choosingϕ=V n in (4.37), we get a relation analogous to (4.27), only with V n in place of V . By making
all adjustments up to (4.29), we obtain

∥a∥2
Rn = ∥V n (t , ·)∥2

H ≤
∥∥V 0,n

∥∥2
H + k2

ν
∥F∥2

L2(J ;H) , (4.41)

that is, uniform boundedness of a independent of t , which rules out (4.40). Analogously to (4.30) and
(4.31), we also have a priori estimates available:

∥V n∥2
L∞(J ;H) ≤

∥∥V 0,n
∥∥2

H + k2

ν
∥F∥2

L2(J ;H) , (4.42)

∥V n∥2
L2(J ;V) ≤

1

ν

∥∥V 0,n
∥∥2

H + k2

ν2
∥F∥2

L2(J ;H) . (4.43)

4.4.3 Passage to the limit

Because the space V is Hilbert, the Bochner space L2
(
J ;V

)
is also Hilber according to Remark

48, and therefore it is (according to Remark 20) reflexive. Theorem 23 therefore ensures that from
a bounded (thanks to (4.43)) sequence V n in L2

(
J ;V

)
, it is possible to select a subsequence that

converges weakly, i.e.
V kn *V ∈ L2

(
J ;V

)
.

From now on, to simplify the notation, we will denote this subsequence again as V n :=V kn . Our aim
is to show that the weak limit V is at the same time a weak solution to the problem by Definition 79.

Again, we realize that the solution of the ODE system (4.38), (4.39) is a function V n , which actually
satisfies (4.37) for each t ∈ J and each ϕ ∈ Vn (in contrast to the formal construction of the weak
equality, where we only assume that the function V in the equality (4.16) exists!).

By multiplying (4.37) by a test function ϑ ∈ C∞
0 ([0,Tmax)) and by integrating over J , we obtain an

equivalent of the weak equality (4.17) in the the form∫
J

∫
Ω

−V n ·ϕϑ̇︸ ︷︷ ︸
(1)

−V n ·∇ϕ ·V nϑ︸ ︷︷ ︸
(2)

+ν∇V n ·∇ϕϑ︸ ︷︷ ︸
(3)

−F ·ϕϑdxdt =ϑ (0)
∫
Ω

V 0,n ·ϕ︸ ︷︷ ︸
(4)

dx , (4.44)

which is satisfied for every ϑ ∈ C∞
0 ([0,Tmax)) and everyϕ ∈ Vn .

Integrals of (1) and (3) represent linear functionals on L2
(
J ;V

)
applied to V n , and therefore

thanks to V kn *V , it holds for them that (see definition of weak convergence 21)∫
J

∫
Ω

(1)dxdt =
∫
J

∫
Ω

V n ·ϕϑ̇dxdt
n→+∞−−−−−→

∫
J

∫
Ω

V ·ϕϑ̇dxdt ,

∫
J

∫
Ω

(3)dxdt =
∫
J

∫
Ω

ν∇V n ·∇ϕϑdxdt
n→+∞−−−−−→

∫
J

∫
Ω

ν∇V ·∇ϕϑdxdt ,

that is, they converge to the respective expressions in the weak equality (4.17). The same applies to
the member (4), because by choice of the n-th initial condition (4.39), we have

V 0,n →V 0

in V, so ∫
Ω

(4)dx =
∫
Ω

V 0,n ·ϕdx
n→+∞−−−−−→

∫
Ω

V 0 ·ϕdx .

However, passage to the limit in the integral of (2) remains a problem, as weak convergence V n *V
in L2

(
J ;V

)
is not sufficient for this.

The solution is as follows:
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1. First, consider the time derivative ∂V n
∂t as a function mapping to the dual space

∂V n

∂t
: J → V′

pursuant (
∂V n

∂t
(t )

)
←−−−−−−−

(
ϕ

)= (
∂V n

∂t
(t , ·) ,ϕ

)
H
=

∫
Ω

∂V n

∂t
(t , ·) ·ϕdx ∀ϕ ∈ V.

Then it can be shown [Pok20a] the boundedness of ∂V n
∂t in the norm∥∥∥∥∂V n

∂t

∥∥∥∥
Lp1 (J ;V′)

=
∥∥∥∥∥∥∥∥∂V n

∂t

∥∥∥∥
V′

∥∥∥∥
Lp1 (J )

=
∥∥∥∥∥∥ sup
ϕ∈V,∥ϕ∥V=1

∣∣∣∣∣∣
(
∂V n

∂t
(t )

)
←−−−−−−−

(
ϕ

)∣∣∣∣∣∣
∥∥∥∥∥∥

Lp1 (J )

≤ ·· ·

For Ω⊂R2 , the choice p1 = 2 can be used, but for Ω⊂R3, we need p1 = 4
3 .

2. Subsequently, we use the Lions-Aubin lemma 73, where we choose B0 = V, B = H, B1 = V′,
p0 = 2 and p1 ∈ {

2, 4
3

}
according to the dimension of the domain Ω (see the previous point).

According to Remark 78, we have V ,→,→ H and in addition, from Remark 69 (i.e. we know that
V ,→ H) and Theorem 70 (i.e. V ,→ H =⇒ H′ ,→ V), it follows that

H ≡ H′ ,→ V′,

where we identified H ≡ H′ according to Remark 18. The statement of the Lions-Aubin lemma
is in this case

Y ,→,→ L2
(
J ;H

)
(4.45)

where Y is the subspace of L2
(
J ;V

)
containing functions with bounded derivatives, i.e. all

approximations V n thanks to the argument given above..

3. Thanks to the compact embedding (4.45) we know (see Definition 68 and 65) that

V n −−−−−−→
(strongly)

V in L2
(
J ;H

)
.

Due to the strong convergence, we can complete the passage to the limit in the nonlinear term (2).
Let us now fix m ∈N and chooseϕ ∈ Vm . Moreover, assume that

ϕ ∈ C∞
0,σ (Ω)3 , (4.46)

which we will use to conclude the proof. Let it n ≥ m and ϑ ∈ C∞
0 ([0,Tmax)). We will show that∣∣∣∣∣∣∣

∫
J

∫
Ω

V n ·∇ϕ ·V nϑdxdt −
∫
J

∫
Ω

V ·∇ϕ ·V ϑdxdt

∣∣∣∣∣∣∣ n→+∞−−−−−→ 0. (4.47)

We manipulate the left hand side as∣∣∣∣∣∣∣
∫
J

∫
Ω

(
V n ·∇ϕ ·V n −V ·∇ϕ ·V

)
ϑdxdt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
J

∫
Ω

V n ·∇ϕ ·V n − V ·∇ϕ ·V n +V ·∇ϕ ·V n︸ ︷︷ ︸
artificially added and subtracted

−V ·∇ϕ ·V

ϑdxdt

∣∣∣∣∣∣∣
≤

∫
J

∫
Ω

∣∣(V n −V ) ·∇ϕ ·V nϑ
∣∣dxdt

︸ ︷︷ ︸
(A)

+
∫
J

∫
Ω

∣∣V ·∇ϕ · (V n −V )ϑ
∣∣dxdt

︸ ︷︷ ︸
(B)
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Term (B) is a linear functional on the space L2
(
J ;H

)
, applied to the difference (V n −V ). Even from

weak convergence
V n *V

in L2
(
J ;H

)
, it follows that

(B)
n→+∞−−−−−→ 0.

We further esitmate the term (A) using Hölder’s inequality 53 (for the integral over J ) and Hölder’s
inequality for vector functions 54 with 1

p = 1
q = 1

2

(A) ≤
√√√√√√√

∫
J

∫
Ω

∥V n −V ∥2 dxdt

︸ ︷︷ ︸
(A1)

√√√√√√√
∫
J

∫
Ω

∥∥∇ϕ ·V n
∥∥2 dx

︸ ︷︷ ︸
(A2)

ϑ2dt ,

where
(A1) =∥V n −V ∥2

H
n→+∞−−−−−→ 0.

To prove (4.47), boundedness of (A2) is sufficient. We will estimate it further

(A2) =
∫
Ω

3∑
j=1


3∑

i=1
∂ jϕi Vn,i︸ ︷︷ ︸[

Hölderp=q= 1
2

]


2

dx ≤
∫
Ω

3∑
j=1

3∑
i=1

(
∂ jϕi

)2
3∑

i=1
V 2

n,i dx

=
∫
Ω

(∇ϕ ·∇ϕ)∥V n∥2 dx .

We use Hölder’s inequality one more time (see Corollary 54) with the choice 1
p = 1

3 , 1
q = 2

3 to get

(A2) ≤
∫
Ω

∥V n∥6 dx

 1
3

︸ ︷︷ ︸
∥V n∥2

L6(Ω)3

∫
Ω

(∇ϕ ·∇ϕ) 3
2 dx

 2
3

dt .

The second integral is finite from the additional assumption of regularity of the function ϕ (4.46),
The norm ∥V n∥L6(Ω)3 is also bounded because at the same time, V n (t , ·) ∈ V and from the Rellich-
Kondrachov lemma 72 for Ω⊂R2 and Ω⊂R3, because we have5

H1 (Ω) ,→ L6 (Ω) .

Thus, we have shown that the limit V satisfies the weak equality (4.17) for ϕ ∈ Vm ∩C∞
0,σ (Ω)3,

where of course m is arbitrarily large. From the construction of Vm using (4.36), it follows that for
each element

ψ ∈ C∞
0,σ (Ω)3 = H∩C∞

0,σ (Ω)3 ,

5A lemma to be precise 72 implies
H1 (Ω) ,→ LP (Ω)

for P ∈ [1,6] when Ω ⊂ R3 and for P ∈ [2,+∞) for Ω ⊂ R2. For member estimation (A2) hence Hölder’s inequality with
choice can be used 2p = P ∈ [2,6] but also p > 1 (that ∃q > 1 so that 1

p + 1
q = 1). In total, then. p ∈ (1,3]. By choosing the

maximum possible p = 3 we put on ∇ϕminimum possible requirements for regularity. Assuming (4.46), which we use, but
can be chosen p and otherwise.

„Sorcery“ with estimates using Hölder’s inequality can be found in the literature in various variants (see e.g. [Pok20a, p.
36]), while a specific procedure is required to prove some other statements.
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there is a sequence ϕm ∈ Vm ∩C∞
0,σ (Ω)3 such that limm→+∞ϕm =ψ. Also, V satisfies (4.17) with the

choiceϕ=ϕm for each m ∈N. By the limit transition for m →+∞ , we find that (4.17) is also satisfied
for ϕ =ψ (all terms are linear with respect to ϕm , i.e. no problem will occur)6. We conclude that V
satisfies the weak equality (4.17) for each

ϕ ∈ C∞
0,σ (Ω)3 ,

and is therefore by definition 79 a weak solution to the incompressible flow problem.

4.4.4 Uniqueness of solutions, undiscussed and open problems

The investigation of solutions to the Navier-Stokes equations is far from being limited to the proof
of existence of a weak solution:

• uniqueness of the solution in R2 has been proved

• uniqueness of solution v R3

– only partial results are known

• the existence of a function P , which has the sense of pressure (exists for a sufficiently smooth
region boundary)

– if V is sufficiently smooth that there is also a classical solution, then P also exists [Neu06b]

• issues of locality vs. globality of solutions, questions of regularity, connection with initial regu-
larity conditions

– a smooth solution exists only locally in time (Ladyženská, Kyselev 1957)

• energy inequality

– We have found a solution that satisfies the energy inequality.

– The question whether every weak solution must satisfy the energy inequality is an open
problem

A number of statements are proved in [Pok20a] and a summary of known and unknown results can
be found in [Pok20b]. Advanced parts of the NS equation analysis for compressible flow can be found
in [NS04, FN17].

6This is sometimes called a closure argument because

+∞⋃
m=1

[
Vm ∩C∞

0,σ (Ω)3
]
= H∩C∞

0,σ (Ω)3 = C∞
0,σ (Ω)3 .



CHAPTER

5
Turbulent flow and turbulence
modeling

5.1 Turbulent flow

• principle: kinetic energy is stored in vortices of different sizes (cascade eddies)

• the transfer of kinetic energy is from larger scales to smaller, but in theory also vice versa

• on the smallest scales, kinetic energy is dissipated into internal energy

5.2 Averaging quantities

5.2.1 Reynolds averaging

• decomposition of a quantity f ∈ {
P,ϱ,Vi ,T

}
to mean values and fluctuations

f = f̄ + f ′ (5.1)

– time averaging (suitable for stationary flow)

f̄T (t , x) = lim
T→+∞

1

T

t+T∫
t

f (τ, x)dτ,

– averaging in space (suitable for homogeneous flow)

f̄V (t , x) = lim
|V (x)|→+∞

1

|V (x)|

∫
V (x)

f (t ,ξ)dξ,

where x ∈ V (x),

– averaging over a statistical ensemble (ensemble averaging), i.e. N -times repeating the
same process (experiment)

f̄E (t , x) = lim
N→+∞

1

N

∑
k

f (t , x)

• In practice T →+∞, |V | → +∞ means that the interval (or the control volume) for averaging
has an order of magnitude larger temporal (or spatial) scale than the turbulent phenomena.
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5.2.2 Reynolds averaging rules

For averaged quantities f , g and α ∈ R, it holds under the assumption of stationary, or homoge-
neous flow

α f =α f̄ ,

f + g = f̄ + ḡ ,

f g = f̄ ḡ + f ′g ′,

∂i f = ∂i f̄

and further

f̄ = f̄ ,

from which it also flows

f ′ = 0.

In the case of non-stationary inhomogeneous flow, the method of (e.g. time) averaging can be changed
to

f̄T (t , x) = lim
T→+∞

1

δt

t+δt∫
t

f (τ, x)dτ,

where δt ≪ t0 and t0 is the time scale of slow (macroscopic) flow changes. For

δt

t0
→ 0,

one can show from the Taylor expansion

f (t +δt ) = f (t )+ ∂ f

∂t
(t )δt +·· ·

that

f̄ → f̄ ,
∂ f

∂t
→ ∂ f̄

∂t
,

and likewise the asymptotic fulfillment of other averaging rules.

5.2.3 Reynolds-averaged Navier–Stokes (RANS) equations

• for incompressible flow, they can be derived from the equations (3.42) by applying Reynolds
averaging to Vi , respectively P

• leads to formally the same form (NS equations) for the averaged quantities but in addition, the
so-called Reynolds stress tensor

TR =
(
τR

i j

)
, τR

i j =−ϱv ′
i v ′

j =−ϱ(
vi v j − v̄i v̄ j

)
appears

– the form of the Reynolds stress tensor does not follow from this procedure, a model is
required

* k-ε model, k-ω model...
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5.2.4 Favre averaging, compressible flow

• Reynolds averaging can be used when modeling compressible flow for all quantities (not only
P and Vi , but alo ϱ and T ), but the resulting equations must be supplemented with correlations
modeling fluctuations density

• it is better to apply Reynolds averaging to ϱ and P and Favre’s averaging on Vi ,T,E , H

• Favre’s averaging is given by the relation

f̃ = 1

ϱ̄
lim

T→+∞
1

T

t+T∫
t

ϱ f dt ,

where ϱ̄ is the Reynolds averaged density.

• similarly to Reynolds averaging (5.1), so the relevant quantity can be decomposed into the av-
eraged and fluctuating parts, respectively

5.2.5 Favre and Reynolds averaged Navier–Stokes equations

• TODO: see [Bla15], p. 220

• Favre averaged Reynolds stress tensor

5.3 Boundary conditions

• boundary conditions for k, ε, ω

5.4 Large Eddy Simulation

• LES .. large eddy simulation

• is based on spatial filtering
f = f̄ + f ′,

where f̄ is the macroscopic (resolved on a numerical grid) part of f and f ′ is the microscopic
(subgrid-size) component

– Smagorinsky

– small eddies are filtered out, large ones are processed on a sufficiently fine mesh

5.5 Modern methods of turbulence modeling

• DNS simulation and machine learning approaches





CHAPTER

6
Fundamentals of fluid
thermodynamics

6.1 Relationship between internal energy and absolute temperature

We start from the definitions of specific heat capacities (i.e. per unit mass) at constant volume
and constant pressure

cV =
(
∂E

∂T

)
V

, cP =
(
∂H

∂T

)
P

, (6.1)

where

H = E + P

ϱ

is the specific enthalpy. The notation (
∂E

∂T

)
V

in (6.1) is usual in thermodynamics and should be understood in the following way. Internal energy
is generally a function of the state variables P , V , T . The lower index V means that the process takes
place at constant volume. It therefore follows from the equation of state that pressure is already a
function of temperature only, i.e. P = P (T ) and the internal energy can therefore be expressed as a
function

E (T ) = E (Φ (T )) ,

where
Φ (T ) = (P (T ) ,V ,T ) .

Then the change in the internal energy of the system depending on the temperature is according to
the chain rule of differentiation given by the relation

cV =
(
∂E

∂T

)
V

:= dE (T )

dT
= ∂E

∂P

∂P

∂T
+ ∂E

∂V

∂V

∂T︸︷︷︸
=0

+∂E

∂T

∂T

∂T
= ∂E

∂P

∂P

∂T
+ ∂E

∂T
.

Analogous reasoning applies to the calculation of cP .
For liquids that can be considered incompressible (ϱ= konst.), it follows that

cP =
(
∂H

∂T

)
P
=

(
∂E

∂T

)
P
+

∂
(

P
ϱ

)
∂T


P︸ ︷︷ ︸

=0

=
(
∂E

∂T

)
P

.
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Some liquids can be considered so-called perfect gases for which the internal energy depends only on
temperature. The internal energy can then be expressed for them as

E (T ) =
∫ T

Tref,i

cV (τ)dτ, H (T ) =
∫ T

Tref,i

cP (τ)dτ (6.2)

where Tref is an arbitrary reference temperature. As the internal energy only appears in the equations
in the differential terms (but never directly), the value of Tref can be chosen arbitrarily, e.g. Tref = 0. In
many applications, the temperature varies over the range where the heat capacity can be considered
constant. Then from (6.2), the relationships

E = cV T, H = cP T (6.3)

follow. Values of cV and cP for different fluids have been measured and can be found in the respective
charts of physical properties of substances.

6.2 State equations

The equation of state indicates the dependence between the state variables of a closed system.
State variables are those that depend only on the current state of the system. For example, for gases,
the equation of state provides the relationship between the temperature T , pressure P and volume V
as

f (T,P,V ) = 0.

In fluid dynamics, the form
f
(
T,P,ϱ

)= 0 (6.4)

is more appropriate. Relationship (6.4) together with the relationship between the specific internal
energy E and temperature T allows closing the system of equations describing the flow (see section
3.10).

6.2.1 Equation of state of an ideal gas

The well known ideal gas equation of state has the form

PV = nRT,

where n is the molar amount of gas and R is the universal (molar) gas constant with the value

R
.= 8.31446 J ·mol−1K.

This equation can also be rewritten in a form related to a unit of volume

P = n

V
RT = nM

V

R

M
T = ϱRspecT, (6.5)

where M is the molar mass of gas and Rspec = R/M is called the specific gas constant. According to the
so-called Mayer’s relation (proof can be found e.g. in [CB15, from p. 668]) it holds for the ideal gas
that

cP − cV = Rspec. (6.6)

Substituting into (6.5) with the use of (6.3), we get the ideal gas equation of state in the form

P = ϱ (cP − cV )T =
(

cP

cP
−1

)
ϱE = (κ−1)ϱE , where κ= cP

cV
. (6.7)

The coefficient κ is called the Poisson’s constant of simply the heat capacity ratio.
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6.2.2 Other forms of the equation of state

• EOS for mixtures etc.

6.3 Heat transfer

6.3.1 Heat transfer by radiation

• integro-differential equation for radiative heat transfer





CHAPTER

7
Formulation of problems in
engineering practice

7.1 Boundary conditions for flow problems

• division of the boundary into inflow, outflow, and wall

• inlet and outlet conditions for viscous and inviscid flow

– a range of possibilities that fit the PDR theory

– e.g. in a pipe: speed or mass flow (momentum) at the inlet, pressure at the outlet,

– other quantities are extrapolated from the flow field, i.e. the zero Neumann boundary
condition applies to them

– there are cases where all conditions can be prescribed at the input and none at the output
(supersonic viscous flow, inviscid flow)

• wall conditions for viscous and inviscid flow (∂V
∂n = 0 or no-slip condition V = 0)

• Navier boundary condition: v is proportional to the component of TD tangent to ∂Ω

• No boundary condition is completely realistic (e.g. in reality, there will not always be a constant
atmospheric pressure at the outflow of the pipe, as it will depend on what just blew out of the
pipe.). By forcing an idealized boundary condition, oscillations and reflections can occur.

• resistance boundary condition

• pulsating flow - boundary conditions preventing reflection (Omer Rathore - contribution at
NC2019)

• far field boundary conditions

• periodic boundary conditions and symmetry conditions (implementation: cells linked as if
they continued beyond the domain boundary)

• boundary conditions for heat transfer

– boundary conditions in 3D and source terms in 1D, Nusselt number

–

λ
∂

∂n
(ϱT ) = Aconv · (T −Twall).
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Figure 7.1: Flow area and wetted perimeter

7.2 Fluid flow in porous media

In this chapter, we briefly describe fluid flow in porous media. The porous environment is made
up of a solid skeleton and a free, interconnected space (pores) through which fluids can flow. The
presence of a rigid skeleton allows the law of conservation of linear momentum to be approximated
by Darcy’s law

V =− 1

µ
K

(∇P −ϱg
)

, (7.1)

where K [m2] is the permeability tensor of the environment.
Darcy’s Law (7.1) can be further substituted into the continuity equation

∂ϱ

∂t
+∇· (ϱV

)= 0,

which gives us
∂ϱ

∂t
+∇·

(
−ϱ
µ

K
(∇P −ϱg

))= 0. (7.2)

When considering the equation of state for density ϱ = ϱ(P ), the dynamic description of fluid flow
in a porous medium can be described by a single partial differential equation (7.2) for the unknown
pressure P .

7.3 Dimensionless numbers characterizing the flow

• Reynolds number expressing the nature of the flow (laminar or turbulent)

Re = ϱ |V |DH

µ
= |V |DH

ν
,

where DH is called the hydraulic diameter (of a pipe), or, in the general case, the so-called char-
acteristic distance. The hydraulic diameter is the hypothetical diameter of a cylindrical pipe in
which the flow would behave the same as in a real pipe with a general cross-sectional shape.
Hydraulic radius is defined as a ratio of cross-sectional flow area to the wetted perimeter, see
Figure 7.1 , and the hydraulic diameter as its quadruple (!), i.e.

RH = A

P
, DH = 4RH.

For example, for a completely filled pipe with a circular cross-section of radius R, it follows that

RH = πR2

2πR
= R

2
, DH = 2R (= D) .
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For a tube with a rectangular cross-section with sides a,b, we get

DH = 4ab

2(a +b)
= 2ab

a +b
.

• Mach number indicating the ratio of the flow speed to the local speed of sound

M = |V |
A

,

where the local speed of sound is generally given by equation [MMD16]

A =
√
κ

(
∂P

∂ϱ

)
T

,

or, for an ideal gas satisfying the equation of state (6.5), one can write

A =
√
κRspecT ,

where κ= CP
CV

, see Section 6.2.1.

• Prandtl number indicating the relationship between momentum diffusivity (i.e. viscosity) and
heat diffusivity

Pr = ν

α
= µ/ϱ

λ/
(
ϱcP

) = µcP

λ
,

where

α= λ

ϱcP

[
m2 · s−1]

is the thermal diffusivity and λ
[
W ·m ·K−1

]
is the thermal conductivity.

• Schmidt number indicating the ratio of diffusivity of momentum and mass

Sc = ν

D
= µ

ϱD
,

where D
[
m2 · s−1

]
is the (mass) diffusion coefficient.

• Péclet number indicates the ratio of advective and diffusive transport of any quantity in free
flow. It applies to mass tranfer in the form

PeM = DH |V |
D

= ReSc

and to heat tranfer as

PeE = DH |V |
α

= RePr.

• Nusselt number indicating the ratio of convective and conductive heat transfer at the boundary
(on the wall)

Nu = h

λ/L
= hL

λ
,

where on the pipe wall, the heat transfer is given by the convection coefficient

Q̇ = h (Tw −T∞) ,

where Tw is the pipe temperature and T∞ is the free stream gas temperature.
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Figure 7.2: Control volume V in a pipe with a variable cross-section.

• Sherwood number indicating the ratio of convective and diffusive mass transfer at the interface
of two substances, or phases

Sh = u

D/L
= uL

D
,

where L is the characteristic dimension and u
[
m · s−1

]
is the convective mass transfer coeffi-

cient (de facto velocity). For example, for multiphase flow, it is the absolute value of the differ-
ence between individual phase velocities. It is used, for example, in modeling the rate of:

– the transfer of water vapor to or from a water droplet during phase transitions,

– access of oxygen to the surface of the burning particle.

Characteristic dimension L is in that case equal to the diameter of the droplet or particle, re-
spectively.

7.4 Quasi-1D flow

Consider the flow in a pipe V oriented parallel with the axis x ≡ x1 with a variable internal cross-
section S (x) with surface area |S (x)| = A (x) (shape doesn’t matter). Let us now choose a control
volume V ⊂V as the inner segment of the tube for x ∈ (a,b) (see Figure 7.2). Then

V = { S (x)|x ∈ (a,b)} .

The mass conservation law in the form (2.17) expressed for this choice of V has the fom

0 = d

dt

∫
V

ϱdx +
∫
∂V

ϱV ·ndS

= d

dt

b∫
a

dx
∫

S(x)

ϱd(x2, x3)+
∫

S(a)

ϱV ·ndS +
∫

S(b)

ϱV ·ndS +
∫
S

ϱV ·ndS, (7.3)

where S is the surface surrounding V between the bases S (a) and S (b). Regardless of the choice of
the boundary condition on the wall (see section 7.1),

V ·n = 0 on S

holds. Therefore, the last term in (7.3) drops out and further calculations yield

0 = d

dt

∫ b

a
A (x)ϱ

(
t ,ξx

)
dx + A (b) ϱV1

∣∣
(t ,ξb) − A (a) ϱV1

∣∣
(t ,ξa)

=
b∫

a

A (x)
∂

∂t
ϱ

(
t ,ξx

)
dx +

b∫
a

∂

∂x

(
A (x) ϱV1

∣∣
(t ,ξx )

)
dx,
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Figure 7.3: Three-dimensional geometry of the combustion chamber of an industrial boiler and its
two-dimensional model.

where the mean value theorem was applied to the integral over S (x) with ξx ∈ S (x). Given any choice
of interval (a,b),

A (x)
∂

∂t
ϱ

(
t ,ξx

)+ ∂

∂x

(
A (x) ϱV1

∣∣
(t ,ξx )

)
= 0 (7.4)

has to be satisfied. If we now introduce the functions ϱ̄ (t , x) = ρ
(
t ,ξx

)
, V̄1 (t , x) = V1

(
t ,ξx

)
, we can

rewrite (7.4) to
∂

∂t
ϱ̄ (t , x)+ 1

A (x)

∂

∂x

(
A (x) ϱ̄ (t , x)V̄1 (t , x)

)= 0. (7.5)

Function values ϱ̄ (t , x), V̄1 (t , x) can also be considered as average values of density, or x-velocity
components taken over the cross-section S (x) at time t .

7.5 Reacting multicomponent flow, combustion modeling

Finally, we present a the rather complicated problem of flow, combustion, heat transfer, and
chemical reactions in the combustion chamber of an industrial pulverized coal-powered boiler. We
will use it to demonstrate various aspects of mathematical and physical modeling of industrial pro-
cesses. The model is based on the works [BSM+13b, BSM+13a], which were created as part of the joint
project of FNSPE CTU in Prague and Honeywell.

The fuel in the boiler is a mixture of coal and biomass of generally different origin such as cereal
bran or wood chips that are sold in in the form of pressed pellets. Biomass is represented only in
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Figure 7.4: Fuel composition from a chemical and physical point of view.

small fractions, as its higher share would have a negative effect on boiler operation (clogging of heat
exchangers, etc.). Each fuel has a chemical composition with a certain representation of basic chem-
icals elements (ultimate analysis) and at the same time composition in terms of physical (proximate
analysis) - see picture 7.4 . Chemical reactions during the combustion of a unit of fuel mass release
the heat of combustion called HHV – higher heating value. However, moisture is present in the fuel,
which evaporates during combustion. The latent heat consumed to evaporate the moisture reduces
the amount of immediately available thermal energy. By subtracting it from the heat of combustion,
we obtain the so-called calorific value or LHV – lower heating value. In devices that, as part of the
work cycle, also ensure the condensation of flue gases (condensing boilers), the entire combustion
heat is used and efficiency of these heat sources is higher than 100% of LHV.

A diagram of the nearly 30-meter-high combustion chamber is shown in Figure 7.3. In each corner
of the combustion chamber, there are six burners, one above the other, which blow out a mixture of
preheated primary air together with finely ground fuel. The stream of this mixture is still surrounded
by the flow of secondary air. Above the burners is the entrance to the tertiary air or OFA - Over Fire
Air, which can increase the oxygen concentration at the cost of reducing the flue gas temperature,
and thereby ensure a more thorough combustion of the mixture. At the ceiling of the chamber, the
flue gas is discharged into the chimney. Heat is transferred to the walls by radiation and convection.
In the walls, there are vertical pipes in which steam is produced from liquid water under high pres-
sure. The flow of steam is conducted from top to bottom, i.e. against the stream of flue gas to make
the heat transfer more efficient. A heat exchanger is located in the upper part of the combustion
chamber (so-called superheater) in which superheated steam is produced. The steam then drives a
turbine to generate electricity and is further used after cooling down to distribute heat. In addition to
the combustion chamber, the boiler also contains another heat exchanger, the so-called economizer,
that uses already partially cooled flue gases for preheating the liquid water, and also a primary air
preheater. In our model, however, only the combustion chamber itself is represented.

The model of the combustion chamber is two-dimensional, which in this case is not very ap-
propriate. The flow in the chamber is heavily dependent on the spatial arrangement of the burners,
which create a vortex in the central part of the chamber (see figure7.5 ). The flow in the chamber is
highly turbulent, which contributes to mixing of fuel and air and thus also to nearly perfect combus-
tion.

7.5.1 Fluid dynamics and energy balance equations

The system of equations describing 2D flow has the form
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Figure 7.5: Top elevation of the combustion chamber with the arrangement of the burners indicated.

∂

∂t
ϱ+∂xi (ϱVi ) = 0,

∂

∂t
(ϱVi )+∂xi (P +ϱV 2

i ) = ∂x j

(
µ∂x j Vi

)+ 1

3
∂x j

(
µ∂xi V j

)− 2

3
∂xi (ϱk)+ϱgi ,

cP

[
∂

∂t
(ϱT )+∂xi (ϱT Vi )

]
= −Rcharhchar −Rvolhvol −Rbmshbms︸ ︷︷ ︸

produkce tepla

−(
qc +qr g +qr w

)︸ ︷︷ ︸
přestup tepla

(7.6)

+ ∂x j

[(
µL +

µT

σk

)
∂x j k

]
where the pressure P is calculated using the ideal gas equation of state

P = ϱRspecT. (6.5)

The terms Rchar,Rvol,Rbms represent burning rates of solid coal components, volatile components
coal, and biomass (see part 7.5.4), respectively. The terms qc , qr g , qr w represent different methods of
heat transfer, described later in Section 7.5.8.

The rate at which a particle burns depends on its size. The average coal particle size at a given
point is calculated from the average count of particles per unit volume n, which is an intensive quan-
tity subject to passive transport according to the equation

∂

∂t
n +∂xi (nVi ) = ∂xi

(
µT

Sct
∂xi n

)
︸ ︷︷ ︸
turbulentní difuze

.

7.5.2 Modeling turbulence

Turbulence is modeled by to k-ε model , where k is the turbulent kinetic energy and ε is the rate
of its dissipation. These quantities satisfy the equations

∂

∂t
(ϱk)+∂xi (ϱkVi ) = ∂x j

[(
µL +

µT

σk

)
∂x j k

]
+Gk −Gb −Ym −ϱε,

∂

∂t
(ϱε)+∂xi (ϱεVi ) = ∂x j

[(
µL +

µT

σε

)
∂x j ε

]
+C1ε

ε

k
(Gk +C3εGb)−C2εϱ

ε2

k

where the friction coefficients satisfy

µT = ϱCµ
k2

ε
, µ=µL +µT ,
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and turbulence production terms have the form

Gk = (
∂x2V1 +∂x1V2

)2 +∂x1V1

[
4

3
µ∂x1V1 −

2

3

(
ϱk +µ∂x2V2

)]+∂x2V2

[
4

3
µ∂x2V2 −

2

3

(
ϱk +µ∂x1V1

)]
,

Gb =−gi
µ

ϱPrt
∂xiϱ,

where

C3ε = tanh

∣∣∣∣V2

V1

∣∣∣∣ , Ym = 2ϱεM 2
t , Mt =

√
k

a2 , a =
√
γRT .

7.5.3 Modeling of chemical reactions

7.5.3.1 Balance equation of chemical components

Reactions take place between the chemical compounds of the gas and between the gaseous com-
ponents and fuel components. The individual chemical components satisfy the balance equations.
On their right-hand side, source terms indicating the conversion rate of the respective component
appear.

• For fixed carbon, volatile fuel components, and biomass, these are equations

∂

∂t
ϱchar +∂xi (ϱcharVi ) = ∂xi

(
µT

Sct
∂xiϱchar

)
+Rchar, (7.7)

∂

∂t
ϱvol +∂xi (ϱvolVi ) = ∂xi

(
µT

Sct
∂xiϱvol

)
+Rvol, (7.8)

∂

∂t
ϱbms +∂xi (ϱbmsVi ) = ∂xi

(
µT

Sct
∂xiϱbms

)
+Rbms︸ ︷︷ ︸

vyhořívání paliva

. (7.9)

• For gas components, we have

∂

∂t
(ϱY∗)+∂xi (ϱY∗Vi ) = ∂xi

(
− µT

Sct
∂xi Y∗

)
+ω∗, (7.10)

where ∗ ∈ { O2, N2, NO, HCN, NH3, H2O , CO2}. As a representative of nitrogen oxides (NOx ), nitric oxide
(NO) is included in this model.

7.5.3.2 Source terms and chemistry of nitrogen oxides

The source terms on the right-hand side of the equations (7.7)–(7.10) have the form
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Figure 7.6: Mechanism and kinetics of nitrogen reactions (for coal only).

ωO2 = ϱO2V ◦
O2

(Rchar
coal +Rvol

coal +Rchar
bms +Rvol

bms)+ (−w1 −w3) · MO2 p

RT

ωN2 = (w2 +w4) · MN2 p

RT
+ωNO

ads ·
MN2

MNO

ωNO = MNO ·w0 + (w1 −w2 +w3 −w4) · MNOp

RT
−ωNO

ads

+ α ·δ3 ·
(
Y N

coal(−Rchar
coal −Rvol

coal)+Y N
bms(Rchar

bms −Rvol
bms)

)
· MNO

MN

ωHCN = (−w1 −w2)
MHCNp

RT
− ((1−α)β(Y N

coalR
vol
coal +Y N

bmsRvol
bms)−δ1α(Y N

coalR
char
coal +Y N

bmsRchar
bms )) · MHCN

MN

ωNH3 = (−w3 −w4) · MNH3 p

RT
− ((1−α)(1−β)(Y N

coalR
vol
coal +Y N

bmsRvol
bms)−δ2α(Y N

coalR
char
coal +Y N

bmsRchar
bms )) · MNH3

MN

ωH2O = ϱH2O ·
(
11.1

H

100
+1.24

W

100

)
(−Rvol

coal −Rvol
bms)

ωCO2 = ϱCO2 ·
(
−1.866 · (Rchar

coal +Rchar
bms )− VCO2 −1.866FC

VM
(Rvol

coal +Rvol
bms)

)
where δ1,δ2,δ3 are the rates of conversion of nitrogen bound in solid fuel to HCN, NH3, and NO,
and coefficients wk express the rate of reactions according to Arrhenius reaction kinetics. A simpli-
fied mechanism of nitrogen reactions is employed, which is shown schematically in Figure 7.6 . The
relevant details follow below:

• Thermal NO, i.e. nitric oxide arising directly from the oxidation of nitrogen radicals in the flue
gas at high temperatures is described by the Zeldovich [?] and the Bowman [?] mechanisms and
the corresponding reaction rate is approximated by

w0 = 2k+
1 ·XO ·XN2 ·

1− k−
1 k−

2 [NO]2

k+
1 [N2]k+

2 [O2]

1+ k−
1 ·[NO]

k+
2 [O2]+k+

3 [OH]

,
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where k±
1 ,k±

2 ,k±
3 describe the velocities of the following forward (+) and reverse (−) reactions:

O+N2
k1
⇌N+NO,

N+O2
k2
⇌O+NO,

N+OH
k3
⇌H+NO.

Their approximation is given by

k+
1 = 1.8×108 ·exp

(−38370

T

)
, k−

1 = 3.8×107 ·exp

(−425

T

)
,

k+
2 = 1.8×104 ·exp

(−4680

T

)
, k−

2 = 3.8×103 ·T ·exp

(−20820

T

)
,

k+
3 = 7.1×107 ·exp

(−450

T

)
, k−

3 = 1.7×108 ·exp

(−24560

T

)
,

as Arrhenius kinetics assume an exponential dependence reaction rates at temperature.

• The formation of NO by HCN oxidation occurs at a rate

w1 = 1.0×1010XHCNX a
O2

exp(−33732.5/T ) . (7.11)

• Formation of NO by oxidation of NH3 occurs at a rate

w2 = 4.0×106XNH3 X a
O2

exp(−16111.0/T ) . (7.12)

• Consumption of NO by reduction to HCN occurs at a rate

w3 =−3.0×1012XHCNXNO exp(−30208.2/T ) . (7.13)

• Consumption of NO by reduction to NH3 occurs at a rate

w4 =−1.8×108XNH3 XNO exp(−13593.7/T ) . (7.14)

• Heterogeneous reduction of NO on the surface of coal particles occurs at a rate

ωNO
ads = 2.27×10−3cs ABETMNOpNO exp(−17168.33/T ) . (7.15)

In relationships (7.11)–(7.15), the symbol X represents the mole fraction a a is the order of the
oxygen reaction.

Remark. Here it is important to note that the given wild values of the constants are tied to a specific
choice of physical units. Absolute temperature T is given in Kelvin (K) and constants in exponentials
have the dimension K−1. When moving to other units, these very same constants will have a different
numerical value!
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Figure 7.7: Burnout curves of fixed carbon in coal particles and their dependence on the temperature.

7.5.4 Fuel burnout

The terms Rchar,Rvol,Rbms in the energy equation (7.6) determine the burning rate of three fuel
components (fixed carbon in coal, volatile substances from coal, biomass). For coal, the chemical
and physical analysis is usually well known and therefore it is possible to consider the solid particles
and volatile components separately and apply the known theory to them. However, it is not possible
to monitor the gradual release of volatile components from the particles, and therefore due to the
miniature size of the particles, it is assumed that the particles move together with the gas, and that
complete devolatilization has already taken place before entering the combustion chamber. This is
at least partly true, as the primary air is preheated.

A simple model [BSM+13a] for the burnout rate of both solid particles and volatile substances
depending on their current concentration, or in terms of the mass of one particle, has the form

dmvol

dt
=− Avolm

αvol

vol Y βvol

O2
e−Evol/(RT ), (7.16)

dmchar

dt
=− Acharmαchar

char Y βchar

O2
e−Echar/(RT ). (7.17)

The so-called burnout curves for mchar depending on the temperature are shown in Figure 7.7.
The calorific value of the individual components is then given by the equation

hchar +hvol = LHVcoal,

where hchar is given by the reaction energy

C+O2 → CO2

and LHVcoal is measured for a specific type of coal.
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In the case of biomass, we use experimental data (such as [?, ?] for spherical pinewood particles
of initial radius 1 mm) on the weight loss of a biomass particle as a function of time. Again, we need
to get the dependency in the form

dm

dt
= f (m) . (7.18)

We proceed according to the following procedure:

1. Burnout curves are usually presented as the relative weight loss

mrel (t ) = m (t )

m (0)
(7.19)

for a given initial particle mass m (0). We fit the measured dependence with a smooth polyno-
mial curve.

2. We approximate the derivative numerically

g (t ) := dmrel

dt
. (7.20)

3. From the essence of the described phenomenon, the function mrel = mrel (t ) is sharply de-
creasing, and therefore it is possible to find (or numerically approximate) the inverse function
t = t (mrel). Substituting into (7.20), we get

dmrel

dt
= g (t (mrel)) =: h (mrel) .

4. Finally, we return to absolute weights. According to (7.19),

dm

dt
= m (0)

dmrel

dt
= m (0)h

(
m

m (0)

)
=: f (m) . (7.21)

Values of f for m ∈ [0,m (0)] can be sampled into a searchable table during the simulation.
The whole process is shown in Figure 7.8 . The burnout curve here has two „stairs“, which
correspond to the rapid release and combustion of volatile components and the slower burnout
of the fixed carbon. There is therefore no need to model the burnout of both components of
the fuel separately.

The following must also be resolved:

1. What happens if m > m (0). It is easiest to put m = m (0).

2. The dependence on temperature and oxygen concentration must be modeled. For example, we
can use the model

dm

dt
= f (m)F

(
T,YO2

)
, (7.22)

where

F
(
T,YO2

)= Y β

O2
e−E/(RT )

Y β

O2,0e−E/(RT0)
.

Constantsβ and E can be fitted from the knowledge of burning curves at different temperatures
or concentrations. The resulting shape of the burning curve depending on the temperature can
be like in Figure 7.9 .

Since the devolatilization of biomass is not modeled within the process of its combustion, we have
only

hbms = LHVbms.
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7.5.5 Remaining constants and expressions

This section summarizes the definitions of the remaining constants and expressions:

Rchar
coal = Rchar, Rvol

coal = Rvol, Rchar
bms = (1−volbms)Rbms,Rvol

bms = volbmsRbms,

ag = εg (YH2O,YCO2 ,Twall)

= 1−exp(−
√

0.1(pH2O +pCO2 )L(8+160pH2O)(1−3.8 ·10−4Twall))

pH2O = p · [H2O] ·10−6, pCO2 = p · [CO2] ·10−6, L = 3.5
Vfurnace

Sfurnace
,

Sct = 0.7, Prt = 0.85, γ= 1.4, σk = 1.0, σε = 1.3, σs = 1.5,

g = (0,−9.81,0), C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σ= 5.67 ·10−8,

ABET = 25000, pNO = p · [NO] ·10−6, cs = cs (n) , X a
O2

= X a
O2

([O2])

nr = 1.7, α= 0.5 β= 0.5 δ1 = 0.5 δ2 = δ3 = 0.25

7.5.6 Boundary conditions

The boundary conditions are defined as follows:

7.5.6.1 Boundary conditions on the walls

• no-slip boundary condition

V1 =V2 = 0,

• zero Neumann boundary condition for extrapolation of scalar quantities

∂

∂n
ϱ= ∂

∂n
ϱY∗ =

∂

∂n
ϱchar =

∂

∂n
ϱvol =

∂

∂n
n = 0,

• boundary condition for turbulent kinetic energy and its dissipation

∂

∂n
(ϱk) = 0,

ε= 2ν

(
∂
p

k

∂n

)2

,

• convective heat transfer to the walls assuming a constant wall temperature

λ
∂

∂n
(ϱT ) = Aconv · (T −Twall). (7.23)
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7.5.6.2 Boundary conditions on burners

Setting the boundary conditions on the burners is as follows:

• burners:

– fuel mass flow, mixture temperature

– one of the following:

* primary air velocity and excess air coefficient (excess air coefficient)

* fresh air flow,

• boundary conditions for the k −ε turbulence model

ϱk = ρin
3

2
(|V in|Iin)2, ρε= ρin

C
3
4
µk

3
2

0.007Dh

where Iin represents the intensity of turbulent kinetic energy

Iin = 0.16

(
ρin|V in|Dh

µ

)− 1
8

.

• Secondary air and OFA nozzles are implemented as burners with zero fuel flow.

7.5.6.3 Recirculation of flue gases

In the fuel preparation system, the so-called primary mixture consists of

• recirculated flue gases that heat up the ground pulverized fuel,

• clean air, added to reduce the temperature of the mixture below the flash point of the fuel.

The resulting mixture is known to contain approx 10% of oxygen. This criterion is used to calculate
the ratio of clean air to recirculated flue gas in the burners. The chemical composition of the recir-
culated gas does not correspond to the current values at the outflow from the combustion chamber,
because this would require modeling the recirculation pipeline as well, or implement some non-local
information transfer. Instead, this composition is prescribed as fixed based on previous simulations.

7.5.6.4 Boundary conditions at the outflow

The flue gas removal is forced, i.e., there is a fan at the outflow that drives the flue gases. This is
because the pressure in the combustion chamber must be slightly below the atmospheric pressure.
Otherwise, flue gases would escape through all leaks in the system. The boundary condition takes
this into account by prescribing a fixed pressure value, which is related to the fan power.
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7.5.7 Initial conditions

The initial conditions assume that there is clean air in the combustion chamber preheated to a
temperature sufficient to ignite the fuel. The specific settings are as follows:

ϱ = ϱini = 360.77819 ·T −1.00336
ini ,

ϱY∗ = ϱiniY∗,ini,

ϱchar = 0, ϱvol = 0, n = 0,

ϱV1 = ϱiniV1,ini,

ϱV2 = ϱiniV2,ini,

ϱT = ϱiniTini,

ϱk = ϱini ·1.5
(
Iini

√
V 2

1,ini +V 2
2,ini

)2
,

ϱε = ϱiniC
0.75
µ

k1.5
ini

0.07Dh
.

Remark. During actual operation, each downtime is expensive and all efforts lead to operating the
equipment without interruption for as long as possible. After shutdown, gas burners ensure preheat-
ing of the combustion chamber. However, after the start itself, the temperature in the combustion
chamber stabilizes for several hours. Because we are only modeling the combustion chamber itself
and prescribing the temperature of the wall as constant (and corresponding to the steady state), the
time until steady state is reached takes only a few seconds of physical time.

7.5.8 Heat transfer modeling

The balance of heat production and consumption must be modeled particularly carefully because
the rate of all chemical reactions, and thus the composition, fundamentally depends on the flue gas
temperature, pollutant production, heat transfer efficiency, etc. The following approaches are in-
cluded in the model:

• Heat conduction is given by standard Fourier’s law (3.48), i.e. qc =−∇· (λ∇T ).

• Convective heat transfer on the walls is calculated algorithmically. Coefficient Aconv (7.23) is a
function of

– flue gas temperature T ,

– Reynolds numbers Re = L ∥V ∥ϱ
µ , where L is the characteristic dimension (wall thickness),

– thermal conductivity of the gas λ,

– specific heat capacity of the gas cP ,

– thermal conductivity of steel (wall material) λwall = 44 J ·m−2·K−1 at temperature 300◦C,

– specific heat capacities of steel cP,wall = 460 J ·kg−1 ·K−1.

• Radiative heat transfer qr g +qr w in (7.6) consists of two parts. Radiation of type gas-gas is given
by the Rosseland model

qr g =−∇· (16σΓn2
r T 3∇T

)
where nr = 1.7 is the index of refraction of flue gases (optically dense medium) and

Γ= 1

3(1.5+ε (T ))
.
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Radiation of type gas–wall is given by the correlation

qr w = ξσ · (ε (T )T 4 −ε (Twall)T 4
wall).

where ξ= (1+0.9) ·0.5 is the correction parameter and the emissivity (and absorptivity) ε of the
flue gas is evaluated based on the emissivity of its components H2O and CO2, with a possible
incorporation of the emissivity of ash and flames. ε further depends on the mean beam length

L = 3.5
V

ζA

where V is the volume of the combustion chamber and A is the total surface area of the walls.
As the walls are wavy because of the pipes that run behind them, the formula is supplemented
with a ripple factor ζ, which represents an increase in the real surface area of the walls.

• Important properties of materials (heat capacity, thermal conductivity, viscosity etc.) are tem-
perature dependent. Correlations expressing the dependence of these quantities on tempera-
ture are usually available for the individual chemical components of the flue gas. The theoreti-
cal value for the mixture is then calculated from them according to the proportional represen-
tation of individual components.

7.6 Multiphase flow, fluidization

In this chapter, we formulate an Eulerian model for two-phase air flow and bulk solid material.
In a chamber, into which air is blown from below at a sufficient velocity through a so-called distrib-
utor , solid particles rise and the resulting mixture behaves like a fluid, called a fluidized bed. The
mass fraction of solid particles per unit volume is considered a continuous quantity, and therefore
conservation laws can be formulated for their movement, analogous to the Navier-Stokes equations.

Fluidization is used for pneumatic transport of granular materials or in fluidized bed boilers
[Bas06]. Depending on the air flow in them, they can be divided to

• bubbling fluidized bed, where solid particles only rise to a certain height in the combustion
chamber and fall back again,

• circulating fluidized bed where the buoyancy is sufficient to allow the particles to leave the
combustion chamber and return through the particle separator (cyclone).

Pneumatic transport occurs when the gas flow is further increased. In general, the fluidizing medium
can be either a gas or a liquid.

Let Ω⊂Rd where d ∈ {2,3} be the domain representing the fluidization chamber and J = (0, tmax)
be the time interval. For both phases (lower index g denotes gas and s denotes the solid phase), we
consider the Navier-Stokes equations in the form

∂

∂t


ϱgεg

ϱgεg V g

ϱsεs

ϱsεsV s

+


∇· (ϱgεg V g

)
∇· (ϱgεg V g ⊗V g

)
∇· (ϱsεsV s

)
∇· (ϱsεsV s ⊗V s

)
 =


0

−εg∇Pg +∇· (εgTg
)

0
−G

(
εg

)∇εs −εs∇Pg +∇· (εsTs)



+


0

ϱg g +βg s
(
V s −V g

)
0(

ϱs −ϱg
)

g +βg s
(
V g −V s

)
 , (7.24)
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Figure 7.10: Simple example of the problem setup

Greatness Unit Range of values Description

Pg Bye R gas phase pressure

T TO R+ temperature (constant)

ϱg kg ·m−3 R+ gas phase density

V g m · s−1 Rd gas phase velocity

εg - [0,1] volume fraction of the gas phase

ϱs kg ·m−3 R+ solid phase density (constant)

V s m · s−1 Rd solid phase velocity

εs - [0,1] solid phase volume fraction

Table 7.1: List of quantities describing two-phase flow during fluidization.
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in J ×Ω, where individual unknown quantities are summarized in Table 7.1 . The term G
(
εg

)∇εs

plays a role analogous to the theoretical pressure gradient of the solid phase ∇Ps and prevents ex-
cessive clumping of solid particles. Every granular material contains a significant proportion of free
space (voidage, void fraction) εg ,min between particles even when at rest. The corresponding maxi-
mum volume fraction of the solid phase (packing limit) is given by

εs,max = 1−εg ,min.

Function G is called compressibility modulus and according to [Gid94], it has an empirically deter-
mined form

G
(
εg

)= 10−8.76εg+5.43. (7.25)

Coefficient βg s represents the transfer of momentum between the two phases, the so-called drag.
The form of βg s used in (7.24) is again according to [Gid94] given by

βg s =
 150

ε2
sµg

(εg dsΦs)2 +1.75 |V g−V s |ϱg εs

εg dsΦs
εs > 0.2,

4
3Cd

|V g−V s |ϱg εs

dsΦs
εs ≤ 0.2,

(7.26)

Cd =
{ 24

Res

(
1+0.15Re0.687

s

)
Res ≤ 1000,

0.44 Res > 1000,
(7.27)

Res =
∣∣V g −V s

∣∣dsϱgεg

µg
. (7.28)

The symbol g denotes the gravitational acceleration, ds is the particle diameter and φs their spheric-
ity.

Relationship

εg +εs = 1, (7.29)

and ideal gas equation of state

P = ϱRspecT. (6.5)

close the system. The temperature T is considered constant and equal for both phases.

7.6.1 Initial conditions

The initial conditions are given as

Pg (0, x) = Pg ,ini (x) ,

V g (0, x) = V g ,ini (x) ,

εs (0, x) = εs,ini (x) ,

V s (0, x) = V s,ini (x) , (7.30)

from which other quantities such as

ϱg (0, x) = Pg ,ini (x)

RspecT
,

εg (0, x) = 1−εs,ini (x) (7.31)

are calculated.
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7.6.2 Boundary conditions

We consider three types of boundary conditions on the boundary divided to the inflow Γin, the
outflow Γout and the wall Γwall, where ∂Ω= Γin ∪Γout ∪Γwall.

• On the wall (for x ∈ Γwall), we consider no-slip boundary conditions for both speeds, i.e.

V s (t , x) =V g (t , x) = 0 ∀t ∈J , (7.32)

and zero Neumann boundary conditions for ϱg and εs , i.e.

∂ϱg (t , x)

∂n
= ∂εs (t , x)

∂n
= 0 ∀t ∈J , (7.33)

where n is the outer normal vector to ∂Ω .

• At the inflow (for x ∈ Γin), the velocity of both phases and the volume fraction of the solid phase
are prescribed by

V g (t , x) = V g ,in (t , x) , (7.34)

V s (t , x) = V s,in (t , x) , (7.35)

εs (t , x) = εs,in (t , x) . (7.36)

Furthermore, zero Neumann condition for the gas density

∂ϱg (t , x)

∂n
= 0 (7.37)

is considered

• At the outflow (for x ∈ Γout), gas pressure is prescribed by

Pg (t , x) = Pg ,out (t , x) . (7.38)

For other quantities, zero Neumann condition applys, i.e.,

∂V g (t , x)

∂n
= ∂V s (t , x)

∂n
= 0, (7.39)

∂εs (t , x)

∂n
= 0. (7.40)

7.7 Flow with a free boundary, phase transitions

• flow with a free boundary

– volume of fluid method

• phase transitions, Stefan problem

• phase-field formulation

• phase transitions with flow

• fluid-structure interaction



Bibliography

[AB06] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis: A hitchhiker’s guide, 3rd
ed., Springer, 2006.

[Ari62] R. Aris, Vectors, tensors, and the basic equations of fluid mechanics, Dover Publications,
1962.

[Bas06] P. Basu, Combustion and gasification in fluidized beds, CRC Press, 2006.

[BEH08] J. Blank, P. Exner, and M. Havlíček, Hilbert space operators in quantum physics, 2nd ed.,
Springer, 2008.

[Bla15] J. Blazek, Computational fluid dynamics: Principles and applications, 3rd ed., Elsevier,
2015.

[Bre10] H. Brezis, Functional analysis, sobolev spaces and partial differential equations, Springer,
2010.

[BSM+13a] M. Beneš, P. Strachota, J. Mach, H. D. Hoang, and V. Havlena, Coal and biomass parti-
cle burnout models for use in pulverized coal and fluidized bed combustion simulations,
Tech. report, Czech Technical University in Prague, 2013.

[BSM+13b] M. Beneš, P. Strachota, J. Mach, H. D. Hoang, V. Havlena, T. Oberhuber, R. Fučík, P. Bauer,
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[KJF77] A. Kufner, O. John, and S. Fučík, Function spaces, Academia Prague, 1977.

[Mar11] Z. Martinec, Continuum mechanics, MFF UK, 2011.

[Maz85] V. Maz’ja, Sobolev spaces, Springer-Verlag Berlin Heidelberg GmbH, 1985.

[MMD16] F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational
fluid dynamics: An advanced introduction with openfoam and matlab, Springer, 2016.

[Neu06a] J. Neustupa, Matematické metody v dynamice kontinua, Přednášky FS ČVUT, 2006.
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